Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (АН)
Шрифт:

Рис. 2. Магнитная структура: а — кубического антиферромагнетика MnO (период магнитной структуры аm в два раза больше периода кристаллической структуры ao), б — тетрагонального антиферромагнетика MnF2. Узлы с одинаковым направлением магнитных моментов образуют пространственную магнитную подрешётку.

Антиферромагнетик

Антиферромагне'тик, вещество, в котором установился антиферромагнитный порядок магнитных моментов атомов или ионов (см. Антиферромагнетизм). Обычно вещество становится А. ниже определённой температуры TN (см. Нееля точка) и остаётся А. вплоть до Т = 0 К. Среди элементов А. являются твёрдый кислород (a-модификация при Т < 24 К), хром (TN = 310 К), а также ряд редкоземельных металлов. В последних обычно

наблюдаются сложные антиферромагнитные структуры в температурной области между TN и (OK < T1 < TN). При более низких температурах они становятся ферромагнетиками. Данные о наиболее известных А. — редких землях — приведены в таблице 1.

Таблица 1.

Элемент T1, K TN, K
Dy 85 179
Ho 20 133
Er 20 85
Tu 22 60
Tb 219 230

Таблица 2.

Соединение TN, K
MnO 120
FeO 190
CoO 290
NiO 650
MnF2 72
FeF2 250
CoF2 37,7
NiF2 73,2
MnSO4 12
FeSO4 21
CoSO4 12
NiSO4 37
MnCO3 32,5
FeCO3 35
CoCO3 38
NiCO3 25

Число известных химических соединений, которые становятся А. при определённых температурах, приближается к тысяче. Ряд наиболее простых А. и их температуры TNприведены в табл. 2.

Бо'льшая часть А. обладает значениями TN, лежащими существенно ниже комнатной температуры. Для всех гидратированных солей TN не превышает 10 К, например TN = 4,31 К у CuCl2·2H2O.

Лит.: см. при ст. Антиферромагнетизм.

А. С. Боровик-Романов.

Антиферромагнитный резонанс

Антиферромагни'тный резона'нс, одна из разновидностей электронного магнитного резонанса. А. р. проявляется как резкое возрастание поглощения электромагнитной энергии, проходящей через антиферромагнетик, при определённых (резонансных) значениях частоты и напряжённости приложенного магнитного поля Н. Для антиферромагнетиков характерно упорядоченное расположение магнитных моментов атомов (ионов) (см. Антиферромагнетизм). Одинаково ориентированные элементарные магнитные моменты образуют в антиферромагнетике так называемые магнитные подрешётки (в простейшем случае — две). При А. р. возбуждаются резонансные колебания векторов намагниченности подрешёток как относительно друг друга, так и относительно направления приложенного поля Н Вид зависимости от эффективных магнитных полей в антиферромагнетиках весьма сложен и различается для кристаллов разной структуры. Как правило, одному значению приложенного поля соответствуют две частоты А. р. Частоты А. р. лежат в интервале 10—1000 Ггц.

Изучение А. р. позволяет определить значения эффективных магнитных полей в антиферромагнетике.

А. С. Боровик-Романов.

Антифидинги

Антифи'динги, химические средства отпугивания насекомых от растений, которыми они питаются. Известно сравнительно небольшое число веществ, обладающих свойствами А., например окись трифенилолова [(C6H5)3Sn]2O и ацетат трифенилолова (C6H5)3Sn(CH3COO). При обработке растений даже малыми количествами указанных веществ насекомые (колорадский картофельный жук, некоторые виды совок и др.), находящиеся на данном растении, погибают. Широкого практического применения А. пока не получили. См. также Репелленты.

Антифобические

средства

Антифоби'ческие сре'дства (от анти... и греч. ph'obos — страх), лекарственные препараты, применяемые при состояниях страха, тревоги, повышенной возбудимости и т. п. См. Нейроплегические средства.

Антифон

Антифо'н (греч. antiрhonos — звучащий в ответ), песнопение, исполняемое поочерёдно двумя хорами или солистом и хором. А. связан по своему происхождению с древнегреческой трагедией, где хор обычно разделялся на два полухория, затем антифонное пение вошло в христианский церковный культ. Чередовались мужской и детский хоры. В католической церкви — пение священника, части хора и целого хора.

Антифоны

Антифо'ны (от анти... и греч. phone — звук), противошумы, индивидуальные приспособления для защиты организма от вредного действия интенсивного шума; изготовляют либо в виде специального вкладыша из ваты, марли, либо в виде наушников, закрывающих ушную раковину.

Антифризы

Антифри'зы (от анти... и англ. freeze — замерзать), низкозамерзающие жидкости, применяемые для охлаждения двигателей внутреннего сгорания и различных установок, работающих при температурах ниже 0°С. Основные требования, предъявляемые к А., — высокие теплоёмкость, теплопроводность, температуры кипения и воспламенения; малая вязкость при низких температурах, небольшое давление пара и возможно низкая вспениваемость. Кроме того, А. не должны сильно корродировать металлы, из которых изготовлены детали системы охлаждения, и разъедать материалы шлангов и прокладок. Этим требованиям в той или иной степени удовлетворяют водные растворы этиленгликоля, глицерина, некоторых спиртов и других органических соединений, а также водные растворы солей (например, хлористого кальция).

Лучшие А. — водные растворы этиленгликоля, к которым для предотвращения коррозии добавляют антикоррозионные присадки (например, фосфорнокислый натрий). Можно получить смеси с температурой замерзания до —75°С (66,7% этиленгликоля и 33,3% воды). Такие растворы при замерзании незначительно увеличиваются в объёме (при содержании 55—65% воды на 0,3% ) и при охлаждении ниже температуры замерзания не разрывают труб и радиаторов системы.

Отечественная промышленность изготовляет этиленгликолевые А. марок 40 и 65 (температуры замерзания соответственно —40°С и —65°С) с фосфорнокислым натрием и марки 40 м с молибденово-кислым натрием.

Лит.: Моторные и реактивные масла и жидкости, под ред. К. К. Папок и Е. Г. Семенидо, 4 изд., М., [1964]; Бобров Н. Н., Воропай П. И., Применение топлив и смазочных материалов, 2 изд., М., 1968.

В. В. Панов.

Антифрикционные материалы

Антифрикцио'нные материа'лы (от анти... и лат. frictio — трение), материалы, применяемые для деталей машин (подшипники, втулки и др.), работающих при трении скольжения и обладающих в определённых условиях низким коэффициентом трения. Отличаются низкой способностью к адгезии, хорошей прирабатываемостью, теплопроводностью и стабильностью свойств. В условиях гидродинамической смазки, когда детали (не деформирующиеся под влиянием давления в смазочном слое) полностью разделены сравнительно толстым слоем смазочного материала, свойства материала этих деталей не оказывают влияния на трение. Антифрикционность материалов проявляется в условиях несовершенной смазки (или при трении без смазки) и зависит от физических и химических свойств материала, к которым относятся: высокие теплопроводность и теплоёмкость; способность образовывать прочные граничные слои, уменьшающие трение; способность материала легко (упруго или пластически) деформироваться или изнашиваться, что способствует равномерному распределению нагрузки по поверхности соприкосновения (свойство прирабатываемости). К антифрикционности относятся также микрогеометрическое строение поверхности, а именно определённая степень шероховатости или пористости, при которых масло удерживается в углублениях, и способность материала «поглощать» твёрдые абразивные частицы, попавшие на поверхность трения, предохраняя тем самым от износа сопряжённую деталь. Проявлению антифрикционности в условиях сухого трения способствует наличие в материале таких компонентов, которые, сами обладая смазочным действием и присутствуя на поверхности трения, обеспечивают низкое трение (например, графит, дисульфид молибдена и др.). Одним из важных свойств А. м., обусловливающих антифрикционность при всех условиях трения, является его неспособность или малая способность к «схватыванию» (адгезии) с материалом сопряжённой детали. Наиболее склонны к «схватыванию» при трении одноимённые пластичные металлы в паре, имеющие гранецентрированную и объёмноцентрированную кубической решётки. При трении по стали наименее склонны к «схватыванию» серебро, олово, свинец, медь, кадмий, сурьма, висмут и сплавы на их основе.

Наиболее распространены как А. м. подшипниковые материалы (ПМ), применяемые для подшипников скольжения. Кроме антифрикционных свойств, они должны обладать необходимой прочностью, сопротивлением коррозии в среде смазки, технологичностью и экономичностью. Вследствие различия в требованиях к материалу подшипника, образующему поверхность трения (антифрикционность), и к остальной части подшипника (достаточная прочность) получили распространение ПМ и подшипники, у которых основа состоит из прочного конструкционного материала (например, стали), а поверхность трения — из слоя А. м. (например, баббита). А. м. наносится литейным способом на заготовку подшипника или на непрерывно движущуюся стальную ленту; из полученной биметаллической калиброванной ленты (см. Биметалл) подшипники (вкладыши и втулки) изготовляются штамповкой.

ПМ делятся на металлические и неметаллические. К металлическим ПМ относятся: сплавы на основе олова, свинца, меди, цинка, алюминия, а также некоторые чугуны; к неметаллическим ПМ — некоторые виды пластмасс, материалы на основе древесины, графито-угольные материалы, резина. Некоторые ПМ представляют собой сочетание металлов и пластмасс (например, пористый слой, образованный спечёнными бронзовыми шариками, пропитанный фторопластом-4 или фторопластом-4 с наполнителями).

ПМ на основе олова или свинца (баббиты) применяются в подшипниках в виде слоя, залитого по стали (иногда по бронзе). Прочное сцепление достигается специальной очисткой стали; возможна также наплавка баббита (для больших подшипников) и заливка им поверхности подшипника, имеющего углубления или пазы для лучшего сцепления. Подшипники автомобилей изготовляются штамповкой из биметаллической ленты стальбаббит.

Поделиться с друзьями: