Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (БО)
Шрифт:

А. П. Шиманюк.

Равнинный бор Прииртышья.

Бор Харальд

Бор (Bohr) Харальд (22.4.1887, Копенгаген, — 22.1.1951, там же), датский математик. Брат физика Н. Бора . С 1915 профессор Высшей технической школы и с 1930 — университета в Копенгагене, работал в области теории функций и теории чисел. В связи с исследованиями дзета-функции развил теорию почти периодических функций (1923). Эта теория, превратившаяся в самостоятельную математическую дисциплину, имеет многочисленные приложения в математическом анализе, небесной механике и физике.

Соч. в рус. пер.: Почти периодические функции, М. — Л., 1934.

Лит.: Titchmarsh Е. С., Harald Bohr, «Journal of London Mathematical Society», 1953, t. 28, № 109, p. 1.

Бор (химич. элемент)

Бор (лат. Borum), В, химический элемент III группы периодической системы Менделеева, атомный номер 5, атомная масса 10,811; кристаллы серовато-чёрного цвета (очень чистый Б. бесцветен). Природный Б. состоит из двух стабильных изотопов: 10 B (19%) и 11 B (81%). Ранее других известное соединение Б. — бура — упоминается в сочинениях алхимиков под арабским названием «бурак» и латинским Borax, откуда и произошло наименование

«бор». Свободный Б. (нечистый) впервые получили французские химики Ж. Гей-Люссак и Л. Тенар в 1808 нагреванием борного ангидрида B2 O3 с металлическим калием. Общее содержание Б. в земной коре 3•10– 4 % по массе. В природе Б. в свободном состоянии не обнаружен. Многие соединения Б. широко распространены, особенно в небольших концентрациях. В виде боросиликатов, боратов, бороалюмосиликатов, а также как изоморфная примесь в других минералах Б. входит в состав многих изверженных и осадочных пород. Соединения Б. найдены в нефтяных водах, морской воде, соляных озёрах, горячих источниках, в вулканических и сопочных грязях, во многих почвах. О главных природных соединениях Б., служащих для его промышленного получения, см. в ст. Бораты природные .

Физические и химические свойства. Известно несколько кристаллических модификаций Б. Для двух из них рентгеноструктурным анализом удалось полностью определить кристаллическую структуру, которая в обоих случаях оказалась весьма сложной. Атомы Б. образуют в этих структурах трёхмерный каркас подобно атомам углерода в алмазе. Этим объясняется высокая твёрдость Б. Однако строение каркаса в структурах Б. гораздо сложнее, чем в алмазе. Основной структурной единицей в кристаллах Б. служат двадцатигранники (икосаэдры), в вершинах каждого из которых находятся 12 атомов Б. (рис. , а). Икосаэдры соединяются между собой как непосредственно (рис. , б), так и посредством промежуточных атомов Б., не входящих в состав какого-либо икосаэдра (рис. , в). При таком строении оказывается, что атомы Б. в кристаллах имеют разные координационные числа: 4, 5, 6 и 5 + 2 (5 ближних «соседей» и 2 более далёких). Т. к. на внешней оболочке атома Б. находятся всего 3 электрона (электронная конфигурация 2s2 2p), на каждую присутствующую в кристаллическом Б. связь приходится существенно меньше двух электронов. В соответствии с современными представлениями, в кристаллах Б. осуществляется особый тип ковалентной связи — многоцентровая связь с дефицитом электронов. В соединениях ионного типа Б. 3-валентен. Так называемый «аморфный» Б., получаемый при восстановлении B2 O3 металлическим натрием или калием, имеет плотность 1,73 г/см3. Чистый кристаллический Б. имеет плотность 2,3 г/см3, температуру плавления 2075 °С, температуру кипения 3860 °С; твёрдость Б. по минералогической шкале 9, микротвёрдость 34 Гн/м2 (3400 кгс/мм2 ). Кристаллический Б. — полупроводник. В обычных условиях он проводит электрический ток плохо. При нагревании до 800°С электрическая проводимость Б. увеличивается на несколько порядков, причём знак проводимости меняется (электронная — при низких температурах, дырочная — при высоких) (см. Полупроводниковые материалы ).

Химически Б. при обычных условиях довольно инертен (взаимодействует активно лишь с фтором), причём кристаллический Б. менее активен, чем аморфный. С повышением температуры активность Б. возрастает и он соединяется с кислородом, серой, галогенами. При нагревании на воздухе до 700 °С Б. горит красноватым пламенем, образуя борный ангидрид B2 O3 — бесцветную стекловидную массу. При нагревании выше 900 °С Б. с азотом образует бора нитрид BN, при нагревании с углём — бора карбид B4 C, с металлами — бориды . С водородом Б. заметно не реагирует; его гидриды (бороводороды ) получают косвенным путём. При температуре красного каления Б. взаимодействует с водяным паром: 2B + 3Н2 О = B2 O3 + 3H2 . В кислотах Б. при обычной температуре не растворяется, кроме концентрированной азотной кислоты, которая окисляет его до борной кислоты H3 BO3 . Медленно растворяется в концентрированных растворах щелочей с образованием боратов.

Во фториде BF3 и других галогенидах Б. связан с галогенами тремя ковалентными связями. Поскольку для завершения устойчивой 8-электронной оболочки атому Б. в галогениде BX3 недостаёт пары электронов, молекулы галогенидов, особенно BFз, присоединяют молекулы других веществ, имеющие свободные электронные пары, например аммиака

В таких комплексных соединениях атом Б. окружен четырьмя атомами (или группами атомов), что соответствует характерному для Б. в его соединениях координационному числу 4. Важные комплексные соединения Б. — борогидриды , например Na [BH4 ], и фтороборная, или борофтористоводородная, кислота H [BF4 ], образующаяся из BF3 и HF; большинство солей этой кислоты (фтороборатов) растворимы в воде (за исключением солей К, Rb, Cs). Общая особенность самого Б. и его соединений — их сходство с кремнием и его соединениями. Так, борная кислота, подобно кремниевой, обладает слабыми кислотными свойствами и растворяется в HF с образованием газообразного BF3 (кремниевая даёт SiF4 ). Бороводороды напоминают кремневодороды, а карбид Б. — карбид кремния, и т.д. Представляет интерес особое сходство модификаций нитрида BN с графитом или алмазом. Это связано с тем, что атомы В и N по электронной конфигурации совместно имитируют 2 атома С (у В — 3 валентных электрона, у N — 5, у двух атомов С — по 4). Эта аналогия характерна и для других соединений, содержащих одновременно Б. и азот. Так, боразан BH3 —NH3 подобен этану СН3 —СН3 , а боразен BH2 =NH2 и простейший боразин BHoNH подобны соответственно этилену СН2 =СН2 и ацетилену CHoCH. Если тримеризация ацетилена C2 H2 даёт бензол C6 H6 , то аналогичный процесс приводит от боразина BHNH к боразолу B3 N3 H6 (см. также Борорганические соединения ).

Получение и применение. Элементарный Б. из природного сырья получают в несколько стадий. Разложением боратов горячей водой или серной кислотой (в зависимости от их растворимости) получают борную кислоту, а её обезвоживанием — борный ангидрид. Восстановление В2 О3 металлическим магнием даёт Б. в виде темно-бурого порошка; от примесей его очищают обработкой азотной и плавиковой кислотами. Очень чистый Б., необходимый в производстве полупроводников, получают из его галогенидов: восстанавливают BCl3 водородом

при 1200°С или разлагают пары BBr3 на танталовой проволоке, раскалённой до 1500°С. Чистый Б. получают также термическим разложением бороводородов.

Б. в небольших количествах (доли %) вводят в сталь и некоторые сплавы для улучшения их механических свойств; уже присадка к стали 0,001—0,003% Б. повышает её прочность (обычно в сталь вводят Б. в виде ферробора , т. е. сплава железа с 10—20% Б.). Поверхностное насыщение стальных деталей бором (до глубины 0,1—0,5 мм ) улучшает не только механические свойства, но и стойкость стали против коррозии (см. Борирование ). Благодаря способности изотопа 10 В поглощать тепловые нейтроны, его применяют для изготовления регулирующих стержней ядерных реакторов , служащих для прекращения или замедления реакции деления. Б. в виде газообразного BF3 используют в счётчиках нейтронов. (При взаимодействии ядер 10 В с нейтронами образуются заряженные a-частицы, которые легко регистрировать; число же a-частиц равно числу нейтронов, поступивших в счётчик: 105 B + 1n=73 Li + 42 a) (см. также Нейтронные детекторы и индикаторы ). Сам Б. и его соединения — нитрид BN, карбид B4 C, фосфид ВР и др. — применяют как диэлектрики и полупроводниковые материалы. Обширное применение находят борная кислота и её соли (прежде всего бура), бориды и др. BF3 — катализатор некоторых органических реакций.

Лит.: Некрасов Б. В., Основы общей химии, т. 2, М., 1967; Щукарев С. А., Лекции по курсу общей химии, т. 2, Л., 1964; Бор, его соединения и сплавы, К., 1960.

В. Л. Василевский.

Б. в организме. Б. относится к числу химических элементов, которые в очень малых количествах содержатся в тканях растений и животных (тысячные и десятитысячные доли % на сухую массу). Б. необходим для поддержания нормальной жизнедеятельности растений. Важнейший симптом недостатка Б. — отмирание точки роста главного стебля, а затем и пазушных почек. Одновременно черешки и листья становятся хрупкими, цветки не появляются или не образуются плоды; поэтому при недостатке Б. падает урожай семян. Известны многие болезни, связанные с недостатком Б., например гниль сердечка сахарной свёклы, чёрная пятнистость столовой свёклы, побурение сердцевины брюквы и цветной капусты, засыхание верхушки льна, желтуха верхушки люцерны, бурая пятнистость абрикосов, опробковение яблок. При недостатке Б. замедляется окисление сахаров, аминирование продуктов углеводного обмена, синтез клеточных белков; однако ферменты, для которых Б. является необходимым элементом, пока неизвестны. По данным М. Я. Школьника, при недостатке Б. у растений снижается содержание аденозинтрифосфорной кислоты, а также нарушается процесс окислительного фосфорилирования , вследствие чего энергия, выделяющаяся при дыхании, не может быть использована для синтеза необходимых веществ. При недостатке Б. в почве в неё вносят борные удобрения (см. Микроудобрения ). В биогеохимических провинциях с избытком Б. в почве (например, в Северо-Западном Казахстане) возникают морфологические изменения и заболевания растений, вызываемые накоплением Б., — гигантизм, карликовость, нарушение точек роста и др. На почвах с интенсивным борным засолением встречаются участки, лишённые растительности, «плешины», — один из поисковых признаков месторождения Б. Значение Б. в организме животных пока не выяснено. У человека и животных (овец, верблюдов) при питании растениями с избыточным содержанием Б. (60—600 мг/кг сухого вещества и более) нарушается обмен веществ (в частности, активность протеолитических ферментов) и появляется эндемическое заболевание желудочно-кишечного тракта — борный энтерит.

Лит.: Скок Дж., функция бора в растительной клетке, в кн.: Микроэлементы, пер. с англ., М., 1962; Ковальский В. В., Ананичев А. В., Шахова И. К., Борная биогеохимическая провинция Северо-Западного Казахстана, «Агрохимия», 1965, № 11.

В. В. Ковальский.

Рисунок к ст. Бор (химич. элемент).

Бор чёрный

Бор чёрный, чрезвычайный налог, чаще всего собиравшийся великим князем московским в Новгородской земле в связи с необходимостью платить увеличенный «выход» в Золотую Орду . Б. ч. брался «с сохи по гривне» и с промыслов, причём к сохе , как единице обложения, приравнивались чан кожевнический, невод, лавка, кузница, а ладья и црен (большая сковорода для вываривания соли) — к 2 сохам.

Бора карбид

Бо'ра карби'д , B4 C (правильнее B12 C3 ), соединение бора с углеродом. Образуется при взаимодействии бора или борного ангидрида с углём при t выше 2000 °С. Чёрные блестящие кристаллы, плотность 2,52 г/см3 , температура плавления 2360 °С. На воздухе устойчив до 1000 °С, не реагирует с кислотами, но разлагается щелочами. По твёрдости превосходит корунд Al2 O3 , карборунд SiC и уступает лишь алмазу и боразону (см. Бора нитрид ). Используется как абразивный и шлифующий материал (см. Карбиды , Твёрдые сплавы ), как полупроводник (см. Полупроводниковые материалы ), а также в ядерной технике как нейтронопоглощающий материал.

Бора магнетон

Бо'ра магнето'н , единица элементарного магнитного момента, равная собственному (спиновому) магнитному моменту электрона. Названа в честь Н. Бора . Б. м. mВ =(9,2732 ± 0,0006)'10– 24 дж/тл = (9,2732 ± 0,0006)'10– 21эрг/гс (см. Магнетон ).

Бора нитрид

Бо'ра нитри'д, BN, соединение бора с азотом. Б. н. получают из элементов при t выше 2000°С или при нагревании смеси B2 O3 с восстановителями (углём, магнием) в атмосфере аммиака; при этом образуется обычная a-форма BN — белый, похожий на тальк порошок, по кристаллической структуре подобный графиту. При давлениях выше 6200 Мн/м2 (62 000 кгс/см2 ) и температурах выше 1350°С в присутствии катализаторов (щелочных и щёлочноземельных металлов) графитоподобная гексагональная a-форма превращается в кубическую алмазоподобную (b-форму (боразон), резко отличающуюся по свойствам. В частности, твёрдость боразона (10 по минералогической шкале) приближается к твёрдости алмаза. В то же время боразон гораздо более устойчив при высоких температурах. Обычный (графитоподобный) Б. н. при комнатной температуре химически инертен и реагирует лишь с фтором (давая BF3 и N2 ) и с HF (образуя NH4 BF4 ); горячие растворы щелочей разлагают его с выделением NH3 . Химическая стойкость боразона значительно выше. Из Б. н. изготовляют высокоогнеупорные материалы, полупроводники, диэлектрики, поглотители нейтронов; a-форма служит сухой смазкой в подшипниках; боразон применяют в производстве сверхтвёрдых абразивных материалов.

Поделиться с друзьями: