Чтение онлайн

ЖАНРЫ

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Шрифт:

Можно представить себе подобное расширение для системы MIU. Мы имели дело с неизмененной формой пар доказательства MIU. Если бы мы теперь добавили MU в качестве второй аксиомы, у нас получилась бы новая система — MIU + MU. Деривация в такой расширенной системе выглядела бы так:

MU аксиома

MUU правило 2

Существует пара доказательства MIU + MU, соответствующая этой деривации: m = ЗОЗОО, n = 300. Разумеется, эта пара чисел не является парой доказательства MIU, а всего лишь парой доказательства MIU + MU. Добавление дополнительной аксиомы ненамного усложнило арифметические свойства пар доказательства. Самое главное их свойство, примитивно-рекурсивность, сохраняется и в новой системе.

Метод Гёделя используется еще раз

Вернувшись к ТТЧ, мы находим

похожую ситуацию. Пары доказательства ТТЧ + G, как и их предшественницы, примитивно рекурсивны. Они представимы в ТТЧ + G с помощью формулы, которую мы сократим следующим очевидным образом:

ПАРА-ДОКАЗАТЕЛЬСТВА-(ТТЧ + G){a,a'}

Теперь мы должны повторить знакомую процедуру. Чтобы сконструировать строчку, соответствующую G, начнем снова с «дяди»:

~Eа:Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-(ТТЧ + G){a,a'}

ARITHMOQUINE {а'',а'}>

Предположим, что Гёделев номер этой строчки — d'. Теперь мы арифмоквайнируем самого дядю. Это даст нам G':

~Eа:Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-(ТТЧ + G){a,a'}

ARITHMOQUINE {SSS.... SSSO/a'',a'}>

. |______|

. S повторяется d' раз

Интерпретация этой строчки такова:

«Меня нельзя доказать в формальной системе ТТЧ + G».

Разветвление

После этого остаются лишь технические детали. G' в ТТЧ + G — то же самое, чем G была в ТТЧ. Оказывается, что либо G, либо G' может быть добавлена к ТТЧ + G, и что результатом этого является дальнейшее разветвление теории чисел. Если вы думаете, что подобное происходит только с «положительными типами», то вы ошибаетесь: точно такой же трюк можно сыграть с ТТЧ + ~G, то есть, с нестандартным вариантом теории чисел, полученным путем добавления к ТТЧ отрицания G. Из рис. 75 видно, что у ТТЧ могут быть самые разные разветвления:

Рис. 75. Разветвление ТТЧ. У каждого нового варианта ТТЧ — своя Гёделева строчка; эта строчка или ее отрицание могут быть добавлены к системе, так что из каждой системы могут родиться два новых варианта; этот процесс может продолжаться до бесконечности.

Разумеется, это только начало. Представьте себе, что мы движемся вниз по самой левой ветви этого дерева, всегда добавляя саму Гёделеву строчку (а не ее отрицание). Это большее, что мы можем сделать, чтобы избавиться от супернатуральных чисел. После добавления G мы добавляем G'; затем G'', G''' и так далее. Каждый раз, когда мы производим новый вариант ТТЧ, ее уязвимость против Черепашьего метода — простите, я имею в виду Гёделева метода — позволяет вывести новую строчку, интерпретируемую как:

«Я не могу быть доказана в формальной системе X».

Разумеется, через некоторое время весь этот процесс начинает казаться привычным и легко предсказуемым — ведь все эти «дырки» делаются при помощи одной и той же техники! Это означает, что, как типографские объекты, они все сделаны по одному и тому же эталону — что, в свою очередь, означает, что они могут быть представлены с помощью одной-единственной схемы аксиом. Так почему бы нам не попытаться заткнуть все дырки одним махом, чтобы раз и навсегда избавиться от этой противной неполноты? Вместо того, чтобы добавлять по одной аксиоме, мы можем добавить к ТТЧ схему аксиом. Эта схема аксиом будет тем эталоном, по которому будут изготовляться G, G', G'', G''' и так далее. Может быть, что путем добавления этой схемы аксиом (назовем ее «G.») нам удастся перехитрить метод «Гёделизации». Действительно, кажется совершенно ясным, что добавление G, к ТТЧ будет последним шагом, необходимым для полной аксиоматизации всех истин теории чисел.

Этот момент соответствует тому месту «Акростиконтрапунктуса», где Черепаха рассказывает о создании Крабом патефона «Омега». Однако читатели были оставлены в неизвестности по поводу судьбы этого аппарата, поскольку усталая Черепаха решила поползти домой спать (но прежде, чем уйти, хитрое животное сделало тонкий намек на Теорему Гёделя о неполноте). Теперь, наконец, у нас дошли руки до того, чтобы прояснить ту ситуацию… Возможно, что, прочтя Диалог «Праздничная Кантататата», вы уже подозреваете, каков будет ответ.

Непополнимость

Как вы, наверное, и подозревали, даже это фантастическое улучшение ТТЧ не может

избежать той же судьбы. Странно, что происходит это по той же причине, что и раньше. Схема аксиом недостаточно мощна, и к ней снова приложимо Гёделево построение. Постараюсь это объяснить. (Существует более строгое объяснение, чем то, которое я приведу здесь.) Если бы удалось описать все строчки G, G', G'', G''', … при помощи одной-единственной типографской схемы, это означало бы, что существует способ описать Гёделевы номера этих строчек при помощи одной-единственной арифметической схемы. И этот арифметический портрет бесконечного класса чисел может быть представлен в ТТЧ + G' при помощи некоей формулы АКСИОМА-ОМЕГА{а}, которая интерпретируется следующим образом: «а — это Гёделев номер одной из аксиом, получающихся из G». Когда a заменяется на какой-либо определенный символ числа, получившаяся формула будет теоремой ТТЧ + G тогда и только тогда, когда этот символ представляет собой Гёделев номер аксиомы, принадлежащей этой схеме.

С помощью этой новой формулы становится возможным представить даже такое сложное понятие как пара-доказательства-ТТЧ + G внутри ТТЧ + G:

ПАРА-ДОКАЗАТЕЛЬСТВА-(ТТЧ + G){a,a'}

Используя эту формулу, мы можем построить нового «дядю» и затем приступить к его арифмоквайнированию уже знакомым нам способом, производя таким образом еще одну неразрешимую строчку, которую мы назовем «ТТЧ + G+1». Вы, наверное, спросите, почему ТТЧ + G+1 не находится среди аксиом, порожденных нашей схемой аксиом ТТЧ + G? Ответом является то, что ТТЧ + G оказалась недостаточно хитра, чтобы предусмотреть возможность своего собственного включения в теорию чисел.

В «Акростиконтрапунктусе» Черепаха, чтобы создать «непроигрываемую запись», должна была достать чертежи того патефона, который она собиралась разрушить. Это было необходимо для того, чтобы вычислить, какой тип вибраций обладает разрушительной силой для данного патефона, и затем создать запись, в звуковых дорожках которой были бы закодированы именно такие звуки. Это довольно близкая аналогия с методом Гёделя, где собственные свойства системы отражаются в понятии пар доказательства и затем используются против нее самой. Любая система, как бы сложна она ни была, может быть подвергнута Гёделевой нумерации, после чего в ней может быть определено понятие пар доказательства — и это будет ружьем, которое выстрелит в самого охотника. Как только система определена, упакована в «коробку», она становится уязвимой.

Этот принцип прекрасно иллюстрирован в диагональном методе Кантора, который позволяет найти недостающее действительное число для каждого хорошо определенного списка действительных чисел между 0 и 1. Именно создание хорошо определенного списка действительных чисел является причиной неудачи. Давайте посмотрим, как Канторов метод может быть повторен снова и снова. Подумайте, что произойдет, если, начиная с некоего списка L, вы проделаете следующее:

(1а) Возьмете список L и построите его диагональное число d.

(1b) Добавите d к списку L, получая таким образом новый список L + d.

(2а) Возьмете список L + d и построите его диагональное число d'.

(2b) Добавите d' к списку L + d, получая таким образом новый список L + d'.

.

.

Этот процесс постепенного «залатывания дырок» в L кажется слишком медленным, поскольку, имея в распоряжении L, мы могли бы получить d, d', d'', d''' сразу. Но если вы думаете, что создавав такой список, получите полное описание всех действительных чисел, то вы ошибаетесь. Проблема возникает в тот момент, когда вы спрашиваете себя, в каком месте L нужно вставить список диагональных чисел. Какой бы хитроумной схемой вы при этом не пользовались, как только ваш новый список L будет закончен, он тут же окажется уязвимым. Как я уже сказал, именно создание хорошо определенного списка действительных чисел оказывается причиной неудачи.

Поделиться с друзьями: