Наука логики
Шрифт:
Прежде всего следует напомнить, что мы уже объяснили мимоходом ту форму, которую имеет в области математики рассматриваемая нами теперь определенность понятия. Мы показали качественную определенность количественного сначала в количественном отношении вообще; но уже при разъяснении различных так называемых видов счета (см. относящееся к этому примечание) мы, забегая вперед, указали, что именно в степенном отношении, которое нам предстоит еще рассмотреть в своем месте, число через приравнение моментов его понятия, единицы и численности, положено как возратившееся к самому себе, и тем самым оно приобретает в себе момент бесконечности, для-себя-бытия, т. е. определяется самим собой. Ясно выраженная качественная определенность величин принадлежит, таким образом (это также было упомянуто выше), по своему существу к степенным определениям, а так как специфика дифференциального исчисления заключается в том, что оно оперирует качественными формами величин, то свойственным ему математическим предметом необходимо должно быть рассмотрение форм степеней, и все задачи и их решения, ради которых применяется дифференциальное исчисление, показывают, что интерес в них состоит единственно лишь в рассмотрении степенных определений, как таковых.
Как ни важна эта основа и хотя она сразу же ставит на первое место нечто определенное, а не чисто формальные категории переменных, непрерывных или бесконечных величин и т. п. или только функции вообще, она все же еще слишком обща;
ведь с тем же самым имеют дело и другие действия; уже возведение в степень и извлечение корня, а затем действия над показательными величинами и логарифмами, ряды, уравнения высших степеней, имеют интерес и применение только к отношениям, основанным на степенях.
Если будем доискиваться этой специфики, просто обозревая то, что имеется в этой части математики, то мы найдем в качестве ее предмета а) уравнения, в которых какое угодно число величин (мы можем здесь ограничиться вообще двумя) связано в одно целое определенности так, что эти величины, во-первых, имеют свою определенность в эмпирических величинах как твердых пределах, а затем в такой же связи и с последними, и между собой, как это вообще имеет место в уравнениях; не так как здесь имеется лишь одно уравнение для обеих величин (если величин более двух, то и число уравнений соотютственно увеличивается, но всегда оно будет меньше числа величин), то это уравнения неопределенные. Во-вторых, они связаны так, что одна из сторон [уравнения], сообщающая этим величинам их определенность, заключается в том, что они (по крайней мере одна из них) даны в уравнении в более высокой степени, чем первая степень.
Относительно этого мы прежде всего должны сделать несколько замечаний. Во-первых, величины, взятые со стороны верного из указанных выше определений, носят всецело характер лишь таких переменных величин, какие встречаются в задачах неопределенного анализа. Их значение неопределенно, но так, что если одна получает откуда-то извне совершенно определенное значение, т. е. числовое значение, то и другая становится определенной; таким образом, одна есть функция другой. Поэтому категории переменных величин, функций и тому подобное, как уже сказано выше, только формальны для специфической определенности величин, о которой здесь идет речь, так как присущая им всеобщность еще не содержит того специфического, что :оставляет весь интерес дифференциального исчисления и что нельзя объяснить из нее при помощи анализа; они сами по себе простые, незначительные, легкие определения, которые делаются трудными только тогда, когда вкладывают в них то, чего в ник нет, для того чтобы иметь затем возможность вывести его из них, а именно вкладывают специфическое определение дифференциального исчисления.
– Что касается, далее, так называемой константы, то о ней можно заметить, что она прежде всего безразличная эмпирическая величина, имеющая для переменных величин определяющее значение лишь по своему эмпирическому определенному количеству, как предел их минимума и максимума; но способ соединения констант с переменными величинами сам составляет один из моментов для природы частной фуякции, которую образуют эти величины. Но и наоборот, сами константы также функции. Поскольку, например, прямая линия имеет значение параметра параболы, это ее значение состоит в том, что она функция; так же как в разложении двучлена вообще константа как коэффициент первого члена ряда есть сумма корней, как коэффициент второго члена - сумма их произведений по два и т. д., стало быть, эти константы суть здесь вообще функции корней. Там, где в интегральном исчислении константа определяется из данной формулы, она трактуется как ее функция. Эти коэффициенты мы рассмотрим далее и в другом определении как функции, конкретное значение которых составляет весь [их ] интерес.
Но то характерное, которым рассмотрение переменных величин в дифференциальном исчислении отличается от их свойства в неопределенных задачах, мы должны видеть в том, что по крайней мере одна из этих величин или даже все они имеют степень выше первой, причем опять-таки безразлично, все ли они имеют одну и ту же высшую степень или они имеют неодинаковую степень; специфическая неопределенность, которую они здесь имеют, состоит единственно лишь в том, что они функции друг друга в таком степенном отношении. Благодаря этому изменение переменных величин детерминировано качественно и, стало быть, оно непрерывно, и эта непрерывность, которая сама по себе есть опять-таки лишь формальная категория некоторого тождества вообще, некоторой определенности, сохраняющейся в изменении, остающейся равной себе, имеет здесь свой детерминированный смысл, и притом единственно лишь в степенном отношении, которое не имеет своим показателем никакого определенного количества и составляет не-количественную, сохраняющуюся определенность отношения переменных величин. Поэтому следует возразить против формализма другого рода, что первая степень есть степень лишь в отношении к более высоким степеням; сам по себе х есть лишь какой-то неопределенный квант. Поэтому нет смысла дифференцировать само по себе уравнения у = ax + в, прямой линии, или s = ct, уравнение просто равномерной скорости. Если из у = ах или же из у = ах + в получается а = dy/dx или из s = ct получается . = с, то в такой же мере определением тангенса будет а = у/х или определением просто равномерной скорости s/t = с. Последняя выражается через dy/dx в связи с тем, что выдается за разложение [в ряд] равномерно ускоренного движения. Но что в системе такого движения встречается момент простой, просто равномерной скорости, т. е. не определенной высшей степенью одного из моментов движения, - это само есть, как отмечено выше, неосновательное допущение, опирающееся единственно лишь на рутину метода. Так как метод исходит из представления о приращении, получаемом переменной величиной, то, конечно, приращение может получить и такая переменная величина, которая есть лишь функция первой степени; если же после этого, чтобы найти дифференциал, берут отличие возникшего таким образом второго уравнения от данного, то сразу же обнаруживается бесполезность действия: уравнение, как мы уже заметили, до и после этого действия остается для так называемых приращений тем же, что и для самих переменных величин.
в) Сказанным определяется природа подлежащего действию уравнения и теперь необходимо показать, какой интерес преследует это действие. Такое рассмотрение может нам дать лишь знакомые уже результаты, какие по своей форме имеются особенно в понимании этого предмета Лагранжем; но я придал изложению совершенно элементарный характер, чтобы устранить приметавшиеся сюда чужеродные определения.
– Основой для действий над уравнением указанного вида оказывается то, что степень внутри самой себя понимается как отношение, как система определений отношения. Степень, указали мы выше, есть число, поскольку его изменение определено им же самим, его моменты, единица и численность, тождественны, - полностью, как мы выяснили ранее, прежде всего в квадрате, более формально (чтб не составляет здесь разницы) - в более высоких степенях. Степень, ввиду того что она как число (хотя бы и предпочитали термин величина как более всеобщее, она в себе всегда есть число) есть множество и тогда, когда она изображена как сумма, может прежде всего быть разложена внутри себя на любое множество чисел, которые и относительно друг друга, и относительно их суммы имеют только то определение, что они все вместе равны этой сумме. Но степень может быть
Однако сначала нужно прибавить к сказанному еще одно определение или, вернее, устранить из сказанного одно заключающееся в нем определение. А именно, мы сказали, что переменная величина, в определение которой входит степень, рассматривается внутри ее самой как сумма и притом как система членов, поскольку последние суть функции возведения в степень, почему и корень рассматривается как сумма, а в своей просто определенной форме - как двучлен; хn= (у + z)n = (у + пуn-1z + ...). Для разложения степени в ряд, т. е. для получения функций возведения в степень, эта формула исходила из суммы, как таковой; но здесь дело не идет ни о сумме, как таковой, ни о происходящем из нее ряде, а от суммы должно брать только соотношение. Соотношение величин, как таковое, есть то, что, с одной стороны, остается после абстрагирования от plus некоторой суммы, как таковой, и что, с другой стороны, требуется для нахождения функций, получающихся в результате разложения в степенной ряд. Но такое соотношение уже определено тем, что здесь предмет есть уравнение, что уn = ахn также есть уже комплекс нескольких (переменных) величин, содержащий их степенное определение. В этом комплексе каждая из этих величин всецело положена как находящаяся в соотношении, с другой со значением, можно было бы сказать, некоторого plus в ней самой - положена как функция прочих величин; их свойство быть функциями друг друга сообщает им это определение plus, но именно этим - определение совершенно неопределенного plus, a не приращения, инкремента и т. п. Мы, однако, могли бы также оставить без внимания этот абстрактный исходный пункт; можно совершенно просто ограничиться тем, что после того как переменные величины даны в уравнении как функции друг друга, так что эта определенность заключает в себе отношение степеней, теперь сравниваются между собой также и функции возведения в степень каждой из них, - каковые вторые функции определены не чем иным, как самим возведением -в степень. Можно сначала выдавать за желание или возможность сведение степенного уравнения переменных величин к отношению функций, получающихся в результате их разложения в ряд; лишь дальнейшая цель, польза, применение должны указать пригодность такого его преобразования; эта перестановка и вызвана единственно лишь ее полезностью. Если выше мы исходили из изображения этих степенных определений на примере такой величины, которая как сумма принимается за различенную внутри себя, то это, с одной стороны, служило лишь для того, чтобы указать, какого вида эти функции, с другой - в этом заключается способ их нахождения.
Мы имеем перед собой, таким образом, обычное аналитическое разложение в ряд, понимаемое для целей дифференциального исчисления так, что переменной величине дается приращение dx, i, а затем степень двучлена разлагается в соответствующий ряд. Но так называемое приращение должно быть не определенным количеством, а лишь формой, все значение которой сводится к тому, чтобы быть вспомогательным средством разложения в ряд. Стремятся же в этом случае - по признанию, определеннее всего выраженному Эйлером и Лагранжем и подразумеваемому в ранее упомянутом представлении о пределе, лишь к получающимся при этом степенным определениям переменных величин, к так называемым коэффициентам (эти коэффициенты суть, правда, коэффициенты приращения и его степеней, которые определяют последовательность ряда и к которым относятся различенные коэффициенты). При этом можно отметить, что так как приращение, не имеющее определенного количества, принимается лишь для целей разложения в ряд, то было бы всего уместнее обозначить его цифрой 1 (единицей), потому что приращение всегда встречается в разложении только как множитель, а множитель "единица" как раз и достигает той цели, чтобы приращение не приводило к какой-либо качественной определенности и к какому-либо количественному изменению, dx же, обремененное ложным представлением о некоторой количественной разности, и другие знаки, как, например, i, обремененные бесполезной здесь видимостью всеобщности, всегда выглядят как определенное количество и его степени и притязают на то, чтобы быть таковыми; это притязание приводит к стремлению, несмотря на это, избавиться от них, отбросить их. Для сохранения формы ряда, развернутого по степеням, можно было бы с таким же успехом присоединять обозначения показателей как indices к единице. Но и помимо этого необходимо абстрагироваться от ряда и от определения коэффициентов по месту, которое они занимают в ряде: отношение между всеми ими одно и то же; вторая функция - производная от первой, точно так же как первая - от первоначальной, и для той, которая по счету вторая, первая производная функция есть в свою очередь первоначальная.
По существу же своему интерес составляет не ряд, а единственно лишь получающееся в результате разложения в ряд степенные определение в своем отношении к непосредственной для него величине. Стало быть, вместо того чтобы считать это определение коэффициентом первого члена разложения, было бы предпочтительнее (так как каждый член обозначается как первый относительно следующих за ним членов ряда, а такая степень в качестве степени приращения, как и сам ряд, не относится сюда) употреблять простое выражение "производная степенная функция", или, как мы сказали выше, "функция возведения величины в степень", причем предполагается, что известно, каким образом производная берется как заключенная внутри некоторой степени разложения.
Но если в этой части анализа собственно математическое начало есть не что иное, как нахождение функции, определенной через разложение в степенной ряд, то возникает еще один вопрос:
что делать с полученным таким образом отношением, каково применение его и пользование им, или [вопрос]: действительно, для какой цели ищут такие функции? Дифференциальное исчисление вызвало к себе большой интерес именно тем, что оно находило такие отношения в конкретных предметах, сводимых к этим абстрактным аналитическим отношениям.
Но относительно применимости из самой природы сути вещей в силу вскрытого выше характера моментов степени само собой вытекает прежде всего следующее, еще до того, как будет сделан вывод из случаев применения. Разложение в ряд степенных величин, посредством которого получаются функции их возведения в степень, если абстрагироваться от более точного определения, отличается прежде всего вообще тем, что величина понижается на одну степень. Такое действие, следовательно, находит применение в таких предметах, в которых также имеется такое различие степенных определений. Если будем иметь в виду пространственную определенность, то найдем, что она содержит те три измерения, которые мы, чтобы отличить их от абстрактных различий высоты, длины и ширины, можем обозначить как конкретные измерения, а именно линию, поверхность и тотальное пространство; а поскольку они берутся в их простейших формах и в соотношении с самоопределением и, стало быть, с аналитическими измерениями, то мы получаем прямую линию, плоскостную поверхность (и ее же как квадрат) и куб. Прямая линия имеет эмпирическое определенное количество, но с плоскостью появляется то, чтб обладает качеством, степеннбе определение; более детальные видоизменения, например то, что это происходит уже и с плоскими кривыми, мы можем оставить без рассмотрения, поскольку здесь дело идет прежде всего о различии лишь в общем виде. Тем самым возникает также потребность переходить от более высокого степенного определения к низшему