О связи хаббловой и гравитационной постоянных
Шрифт:
Но какая именно нелинейность реализуется? Их ведь бесконечное множество! Промоделируем на цифровой конкретике, упрощающее взяв разбег равноускоренным. Пусть – опять-таки для простоты – ускорение a= 1 м/сек 2. Мы находимся в покое, а от нас с этим ускорением стартует некое тело. Посчитаем скорости и удаления, какие оно будет иметь относительно нас в моменты времени t =1 сек, t =2 сек и t =3 сек после старта. Скорость считаем по формуле v = at, а удаление – по формуле пути, проходимом равноускоряющимся телом: S = at 2 /2.Для времени 1 сек получается скорость 1 м/сек и удаление 0,5 м, для времени 2 сек – соответственно 2 м/сек и 2 м, а через 3 сек скорость оказывается 3 м/сек, удаление – 4,5 м. Эти три последовательные значения скорости – как значения функции – откладываем по ординате, соответствующие им значения удаления – как значения аргумента – откладываем по абсциссе, и строим график по трём точкам. Получается полупарабола. То есть линия, выходящая из начала координат и сначала почти вертикально уходящая от абсциссы, но затем становящаяся всё более горизонтальной,
Последовательность приближений вытекает из выведенной нами ранее формулы S = a sup ( n – 1) • t ( n +1) /2 n ,при n – > , где n– натуральное число. Как должны понимать, это закон, по которому мат. вселенная раздвигается своей вещественной составляющей – в отражение перманентной появляемости в ней нового вакуумного пространства. При n = 1получаем a sup 0 – суперускорение нулевой степени, означающее отсутствие роста ускорения, и значит – движение равноускоренное. Брать именно его в лице вселенского вещественного раздвига, получаешь первое приближение по формуле (для нас – второе, коль хаббловское, которое вне формулы, уж считаем первым). В общем, сколько возможных значений n– в качестве натурального ряда чисел, начиная с единицы, – столько и приближений, степень коих возрастает с ростом n. Что касается первого (ну, второго – с учётом хаббловского), то раздвиг при нём считается по формуле пути, проходимом равноускоренно движущимся телом, – именно в эту формулу – S = at 2 /2– превращается та общая при n = 1. Что касается второго приближения (третьего, с учётом хаббловского), то раздвиг при нём идёт по формуле S = a sup t 3 /4. Именно в неё превращается общая формула, если взять n = 2. Предлагаю читателям самим тут всё обсчитать. Для простоты с a sup поступая так же, как поступали мы с a: брали a= 1 м/сек 2, так берём и a sup = 1 м/сек 3. Скорость же – для моментов времени в одну, две и три секунды от начала разбега – считается тут по формуле v = a sup t 2 /2. А я лишь скажу, что график получается менее спешащий стать параллельным абсциссе, нежели это делает график первого приближения, а посему и расходиться с хаббловским графиком получаться должно у него хуже (ну, требует для этого совсем уж больших значений аргумента).
Лучше давайте возвратимся к первому приближению (второму с учётом хаббловского). Сравнительно с хаббловским его проанализируем. Прежде всего тут то, что ускорение разбега очень мало, даже с учётом его возрастаемости (относительно нас) у всё более далёких галактик – из-за действия суперускорений всех наличных степеней. А сравнить два графика – посчитанный для a= 1 м/сек 2и посчитанный для a= 2 м/сек 2, – то второй оказывается более спрямлённой полупараболой. Ну, менее спешащей становиться параллельной абсциссе. Из чего вывод, что нам ещё повезло: являй природа б'oльшие ускорения для галактик – в их взаимоотносительном разбеге, – так разницу с хаббловским графиком могли б не обнаружить даже и за счёт сверхдалёких звёзд. Поскольку именно за счёт загибаемости к абсциссе полупарабола второго приближения расходится с хаббловской прямой – как графиком приближения первого.
Если прямая зависимости Хаббла пересекает достаточно спрямлённую полупараболу, от заключённой внутри неё площади отрывая некий нетолстый верхушечный сектор (который тем самым будет располагаться н'aд этой хаббловской прямой), то вполне можно говорить о практической совпадаемости графиков зависимостей на значительном их участке, упирающемся в начало координат. И уж только много дальше по ходу графиков, когда хаббловский продолжает по-старому уходить от абсциссы, а ускоренческий всё больше загибается к ней, становится явным расхождение. И в природе именно тем образом подобрались ускорения и прочее, что как раз к так'oму варианту приводят, коль несовпадаемость зависимостей первого и второго приближений (ну, хаббловской и первой нашей) демонстрируется лишь очень далёкими звёздами (имею в виду сверхновые типа Ia в галактиках, убежавших от нас на миллиарды светолет).
Плюс постоянная Хаббла, посчитанная на базе скоростей и удалённостей таких сверхновых, оказывается меньше ныне признанной – как посчитанной (так уж исторически сложилось!) на базе относительно близких
звёзд. Меньше, а не больше, что есть знаковый момент, и – как факт – совпадает с прогнозом от первой нелинейной зависимости. График её построили по трём найденным точкам, как помним. И вот первая точка даёт 1 м/сек : 0,5 м = 2 сек –1. (Размерность сек –1вполне имеет право быть размерностью постоянной Хаббла: стоит у последней вместо мегапарсека взять значение его в метрах, как метры в числителе и знаменателе сокращаются, размерность оттого становится сек –1, а значение постоянной – численно совсем иным. Это я тому, кто сразу всё сам не понял.) Вторая же точка даёт 2 м/сек : 2 м = 1 сек –1, а третья – 3 сек : 4,5 м = 0,67 сек –1. Налицо уменьшаемость. Ну, меньшесть при б'oльших значеньях аргумента.То есть что? У каждой звезды на каждый берущийся момент её хода есть, так сказать, индивидуальная постоянная Хаббла. Как отношение показываемой звездою скорости убегания к наличной у ней удалённости. И вот для ускоренного разбегания звёзд как раз характерно, что чем дальше звезда, тем меньшей должна быть у ней такая "индивидуальная постоянная". Для разбеганья же с замедленьем – всё наоборот, "индивидуальные постоянные Хаббла" призваны быть больше у более далёких звёзд. То есть момент это знаковый, сам по себе позволяющий судить о том, какой вариант реализован в природе. Ускорительная ли, или замедлительная нелинейность у изменения скорости звёзд по мере всё более дальней их от нас расположенности.
Так что, из самого по себе факта большести скоростей убегания у более отдалённых звёзд – сравнительно с менее отдалёнными, – ничего определённого сказать о характере разбегания не получается. В этом хитрость мирозданья, предрасполагающая к заморочкам! Судить о характере оказывается возможным только по динамике отношения скорости к удалению. Как это отношение, найденное для менее далёкой звезды, меняется при переходе ко всё более далёким.
Если оно остаётся тем же, то есть демонстрирует постоянство, значит разбег равномерный. Равномерно, то есть, разбегаются от вас галактики, получившие когда-то (в один прекрасный момент!) относительно вас разные скорости – каждая свою, и до сих пор их удерживающие. Это картина Сэлье. Возможная в качестве одного из вариантов, не противоречащих логике. С тем, что другой непротиворечащий вариант здесь, упорно не замечавшийся физиками, заключается в следующем: галактики отдаляются от нас с увеличивающимся ускорением! Что мы уже подробно и разобрали – несколько выше, в середине этого нашего космологического разговора. А всего 11 – 12 страниц выше – дополнительно разобрали ещё и в цифрах, высчитывая суперхаббловские постоянные.
Если же отношение уменьшается, то объяснительная – к движению галактик – зарисовка Сэлье логикой уже не пропускается, даже в скромном качестве всего лишь одного из возможных вариантов. И по-любому вынуждены оказываемся говорить об ускоренной от нас отдаляемости галактик. По причине ли действия тёмной энергии, или сказываемости пресловутого скалярного вакуумного поля, или чёртик из табакерки выскакивает и на галактики дует, – не важно, лишь бы ускорение давало, а уж динамика заявленного нами отношения это ускорение ущучит. (Прошу прощения у читателя за юмор, но очень уж досаждают апелляции ко всем этим "тёмным энергиям", когда знаешь настоящую причину: ускоренность разбега галактик – дериват прибываемости нового вакуумного пространства между ними. Прямая имманента мат. вселенской пространственной разбухаемости.)
Ну и, в-третьих, если отношение увеличивается, значит разбег замедляющийся. Проходит с отрицательным ускорением, то есть, – в противность второму случаю, где ускорение положительное. Этот третий случай долго обыгрывался в отталкиваемости от стягивающего – во вселенском масштабе – действия наличных масс. Космологическую постоянную отменили, найдя – с подачи Сэлье – галактики разбегающимися из-за первовзрыва, но ведь разбег-то по Сэлье инерционный, и если наложить на него самостягиваемость всей наличной вселенской мат. массы (разнесённые элементы которой всегда и везде продолжают тянуть друг друга – в силу закона всемирного тяготения), то и получится картинка замедляющегося инерционного разбега. Не понимали тут слишком простого: Большой Взрыв не закончился, а исправно продолжается, выражаясь в возникаемости в мат. вселенной всё нового и нового вакуумного пространства, и разбег оттого галактик не инерционный – от давно закончившегося толчка в лице того Взрыва, – а постоянно провоцируемый, чем и способен (начиная с критически большого масштаба, так как масштаб прибавляет ему выраженности) перекрывать самостягиваемость огульной вселенской массы.
Впрочем, этот третий случай – случай притормаживающегося разлёта галактик – не лишён-таки значенья и для нас, с нашей новорелятивистской теорией как провозгласителем ускоряющегося разлёта. Прибытия пространства в масштабе всей мат. вселенной ничто, разумеется, перечеркнуть не сможет – в конечном его эффекте, то есть сказываться галактическим ускорением оно по-любому будет – ежели иметь в виду именно всю мат. вселенскую наполнительность, но в какой-то локали (на каком-то – достаточно большом! – участке мат. вселенской суперсферы) какая-нибудь стягивающая галактики причина, дополнительная к основной, может перекрывать разгоняющее действие на них взрывной вселенской расширительности, и если мы, с Землёй, окажемся в центре такой локали, то наши хабблы вплоть до какого-то весомого удаления окрест смогут наблюдать как раз замедляющийся отход галактик.
На моделирующей цифровой конкретике покажем сомневающимся правоту наговоренного нами. Пусть от нас стартуют три тела. Первое со скоростью 2 м/сек, второе – 4 м/сек, третье – 6 м/сек. И всё происходит в духе Сэлье, то есть от старта тела скоростей не меняют, так что расходятся от нас равномерно. Посмотреть нам на них через 3 сек, так первое окажется от нас на расстоянии S = vt= 2 м/сек · 3 сек = 6 м, второе – 12 м, и третье – 18 м. Пусть в этот момент на тела одинаково начала действовать некая ускоряющая причина. Придающая каждому в направлении его движения ускорение a= 0,2 м/сек 2. Посмотрим на тела ещё через 3 сек. Каждое из них, как равноускоренно движущееся, пройдёт дополнительный путь S = at 2 /2= 0,2 · 3 2/2 = 0,9 м. Этот путь дополняет те, которые тела проходят в порядке своей равномерной двигаемости с полученными на старте скоростями: вторые 6 м – первое, вторые 12 м – второе, и вторые 18 м – третье. В итоге, общий путь для первого будет 6 + 6 + 0,9 = 12,9 м, для второго – 12 + 12 + 0,9 = 24,9 м, для третьего – 18 + 18 + 0,9 = 36,9 м. Скорости же у каждого из тел прибавится v = at =0,2 м/сек 2· 3 сек = 0,6 м/сек. Отчего первое будет иметь скорость V 1 =2 + 0,6 = 2,6 м/сек, второе – V 2 = 4 + 0,6 = 4,6 м/сек, и третье – V 3 = 6 + 0,6 = 6,6 м/сек. Соответственно "индивидуальные постоянные Хаббла" для тел (на которые мы смотрим через 6 сек после старта, не забывать!) будут такими: H 1 =2,6 м/сек : 12,9 м = 0,202 сек –1, H 2 = 4,6 м/сек : 24,9 м = 0,185 сек –1, и H 3 = 6,6 м/сек : 36,9 м = 0,179 сек –1. То есть уменьшающимися – как мы и обещали! – у тел по мере роста их от нас удалённости. Подобное уже нам показывал анализ полупараболы – как графика соотносимости скорости с пройденным путём у равноускоренно движущегося тела.