Охота за кварками
Шрифт:
Эти шутливые слова прикрывают вполне весомые доводы. Действительно, в первой половине XX века в центре внимания микрофизики находились атомы, электроны, фотоны, атомные ядра. Все вещества состоят из атомов, пишет В. Гинзбург, свет Солнца дарит Земле жизнь.
Так стоит ли удивляться, что физики, фактически подчинившие эти атомно-фотонно-электронно-ядерные стихии, стали центральной фигурой в науке, и не только в ней!
Но времена меняются. Овладев атомами и их ядрами, этим хлебом насущным, микрофизики углубились затем в объекты совершенно экзотические, стали «выращивать» редкие, нежные растения, или, по-иному, стали лакомиться редчайшими деликатесами.
В самом деле, ну какое значение для промышленности,
«То исключительное место, — продолжал академик, — которое микрофизика занимала в недавнем прошлом, в значительной мере перешло к биологии и, конкретно, к биофизике и молекулярной биологии, обещающим создать жизнь «в пробирке», радикально удлинить человеческую жизнь, побороть страшные заболевания (рак и другие), мобилизовать огромные ресурсы человеческого мозга. Микрофизика же сегодняшнего дня заняла место, аналогичное астрофизике с ее увлекательными открытиями и загадками, с ее пульсарами, квазарами, «черными дырами», космологической сингулярностью…»
Это мнение В. Гинзбурга разделяют и другие ученые.
Ход их рассуждений таков. Атомная физика как наука завершена. Ядерная физика — здание, еще не достроенное, по то, что она может дать практике, уже вполне определилось. С 40-х годов микрофизика стала изучать прихотливый мир элементарных частиц. Получаются они искусственным путем на ускорителях и в космических лучах. И тут человек как бы творит и хочет познать совершенно искусственный ирреальный мир, имеющий с миром реальным ничтожную связь. Потому и трудно ждать каких-то практических выгод от подобных исследований. (Так и рождается версия о том, что работающие в этой области физики похожи… на коллекционеров марок. Или другая сентенция: что, строя дорогостоящие ускорители, ученые удовлетворяют свое любопытство за, так сказать, государственный счет.)
Подтвердить сказанное вроде бы легко. Вспомним хотя бы про загадку мю-мезона, или, если короче, мюона.
Мюоны — это электроны, только гигантских размеров. Зачем они? Ведь электроны прекрасно справляются со своей ролью в природе, никакой помощи от мюонов им не нужно. Сейчас, правда, полагают, что мюоны и другие диковинные частицы были необходимы в давние времена, на ранних этапах эволюции Вселенной. Возможно еще, что они трудятся в недрах далеких звезд. Но па Земле мюоны явно оказались без дела, и считается, что они остаются «безработными» до сих пор.
Мезонные фабрики
В доводах тех, кто отказывает микрофизике в большом будущем, есть, несомненно, доля истины. Ведь по мере продвижения в глубь материи разрыв в масштабах времен, длин, массы — между тем, что окружает человека, и тем, что он наблюдает, все увеличивается. И мы уже попросту вынуждены наполовину жить в стране абстракций, в иллюзорном, фантастическом мире.
Во всем этом — тщете представлений, в ломке взглядов — есть и глубокий трагизм. По существу, человек сам разрушает свой мир, ту область, экологическую нишу, так сказать, где ему так легко и свободно (имеются в виду представления!) дышалось. Он добровольно отказывается от тысячи понятий, сопровождавших его в жизни на каждом шагу. В поисках истины исследователи по камушкам, по досточкам разбирают лежащий под их ногами и без того крохотный мосточек, простершийся над бескрайним бушующим океаном природы.
Но нет худа без добра! Немало теряя, мы много и приобретаем: новые технологии, понимание скрытой сути вещей. Одно из этих достижений
осознание того факта, что при погружении в микромир связь между совершенно разнородными, как прежде казалось, силами-стихиями становится все крепче.Вспомним про ядерную демократию, про этот чудесный механизм «взаимной поддержки», «самосогласованности» элементарных частиц, когда оказывается, что в мире буквально все важно и значительно, что здесь нет пылинок, мелочен, второстепенного, где все завязано в один тугой узел, где бессмысленно рассматривать, скажем, протон без мезонов и всех других частиц, где только полная совокупность всех сил и явлений природы, порождающей саму себя, и творит данный нам в ощущениях мир.
Но отсюда следует и вывод практического порядка: только выяснение достаточно полной картины микромира позволит понять и столь важные для нас с точки зрения приложений ядерные силы. Таким образом, неожиданно выясняется, что физика элементарных частиц познает не только искусственный мир, не только далекие от жизни фантомы, но и структуру далеко не безразличной для нас области природы.
Вот так возникают очертания моста, соединяющего физику ядра и физику элементарных частиц, а также эти разделы фундаментальной физики с прикладными областями.
Как все это реализовать в практическом плане?
В ближайшие годы в подмосковном городе Троицке (Красная Пахра), где расположен Научный центр АН СССР, в Институте ядерных исследований (ИЛИ, его директор — академик АН Грузии А. Тавхелидзе, да, тот самый, кто вместе с Н. Боголюбовым сделал кварки цветными) начнет работать совершенно необычная фабрика… мезонная.
Еще с 70-х годов лексикон физики элементарных частиц пополнился новым термином — «мезонные фабрики». Речь тут шла, по сути, об ускорителях. Но дело было уже не в том, чтобы создавать колоссы в погоне за рекордными энергиями частиц, а чтобы на этих новых ускорителях получать пучки элементарных частиц с плотностями в тысячи раз большими, чем в пучках традиционных ускорителей.
Энергия мезонной фабрики в Троицке всего 600 МэВ (таковы параметры монтируемого там линейного ускорителя протонов и отрицательных ионов водорода), но зато ток пучка достигнет 1 миллиампера, так что мощность пучка — 0,6 МВт уже будет сравнима с мощностью небольшой электростанции.
Зачем нужны большие плотности пучка частиц? Чтобы прежде всего повысить точность экспериментов на ускорителях. Число измеренных событий, очевидно, пропорционально числу частиц в пучке. Надежность экспериментов поэтому возрастет.
А еще столь мощные пучки позволяют создать достаточно плотные и пучки вторичных частиц: поляризованных протонов и тепловых, холодных и ультрахолодных (с очень малой энергией) нейтронов, пучки пи-, ка-, и мю-мезонов (отсюда, видно, и родилось название «мезонные фабрики»), различных сортов нейтрино.
Схема получения мезонных и нейтринных пучков такова. При бомбардировке свинцовой мишени протонами рождаются пи- и ка-мезонные пучки, они фокусируются мощными магнитами и формируются в пучок, направляемый в нейтринный распадной канал. Там пионы распадаются на мюоны и нейтрино. Мюоны заворачиваются магнитным полем в мюонный экспериментальный зал.
Распадной канал заканчивается многометровой железной и земляной защитой. Она не пропустит ни одной частицы, кроме всепроникающих нейтрино, которые устремятся в особый нейтринный экспериментальный зал.
Так создается расходящийся веер пучков разной природы. Все это позволяет вести большое число (до 10 – 15!) экспериментов одновременно.
Космический рентген
Постоянное дело мюоны получат через несколько лет, а вот аккордную работу эти частицы выполняли уже не раз. Об этом стоит рассказать.