Покоренный электрон
Шрифт:
При большой внутренней емкости через лампу начинает проходить переменный ток. Лампа перестает выполнять одно из своих назначений — служить выпрямителем тока.
Все это привело к мысли, что надо не только объединить контур с лампой в одном приборе, но создать совершенно новый тип лампы, предназначенный специально для очень коротких волн.
Такие лампы были созданы советскими учеными. В 1932 году Д. А. Рожанский разработал проект лампы, получившей название клистрона.
Постройку клистрона осуществили в 1935 году А. Арсеньева и О. Хейль. Слово клистрон в переводе с греческого означает «морской прибой», и то, что происходит за стеклянными стенками клистрона, действительно
Клистрон представляет собой стеклянную трубку, на которой надеты два «бублика», то есть два объемных резонатора, исполняющие обязанности колебательных контуров.
Как видно на рисунке 88 в объемном резонаторе клистрона роль емкости — конденсатора — исполняют сетки, а катушка индуктивности заменена металлической трубкой, согнутой в кольцо и разрезанной внутри. Стрелки показывают, как по ней движутся электроны, когда в резонаторе происходят электрические колебания.
Рис. 88. Объемный резонатор клистрона в форме бублика, сделанного из металлической трубки с разрезом по внутреннему диаметру. Часть трубки вырезана, чтобы было видно, как он устроен. Стрелки указывают направления движения электронов в резонаторе при колебаниях.
В одном конце трубки помещается электронная пушка, по своему устройству похожая на электронную пушку осциллоскопа. Она посылает узкий и прямой пучок электродов вдоль оси трубки по направлению к аноду, который расположен в противоположном конце трубки (рис. 89).
Рис. 89. Схема клистрона: сетки группирователя разбивают электронный поток на отдельные сгустки, которые отдают свою энергию сеткам улавливателя.
По пути от электронной пушки к аноду электронам приходится пролетать через две пары сеток, которые являются продолжением стенок объемных резонаторов.
К первому резонатору, то есть к первой паре сеток подведено переменное напряжение высокой частоты. Знаки зарядов на этих сетках непрерывно и очень быстро сменяют друг друга, — когда на одной сетке появляется минус, то на другой — плюс. А через несколько десятимиллиардных долей секунды плюс сменяется минусом, минус опять плюсом и так далее.
Электроны, выброшенные пушкой, летят до первой пары сеток все с одинаковой скоростью и сплошным потоком. Попав в пространство между сетками, электроны оказываются во власти высокочастотного поля этих сеток.
Постоянное электрическое поле действует на электроны подобно ветру — на пылинки. Оно увлекает, гонит и несет электроны, ускоряет их движение или, наоборот, замедляет его.
Переменное же поле можно сравнить с ветром, который дует то спереди, то сзади, то есть поочередно и подгоняет электроны, и тормозит.
Электронные сгустки
В тот момент, когда на сетке, более близкой к электронной пушке, появляется плюс, на второй сетке будет минус. Электроны, оказавшиеся в междусеточном пространстве, испытывают одновременно воздействие обеих сеток.
Сетка, которую они уже пролетели, то есть оставшаяся у электронов позади, притягивает их к себе, — замедляет движение электронов. Вторая сетка, которую еще предстоит проскочить, отталкивает электроны назад, то есть тоже замедляет
их полет.В целом же получается так, как будто «ветер дует электронам в лоб», — электрическое поле сеток тормозит их движение, и электроны покидают междусеточное пространство с пониженной скоростью.
Разумеется, что электроны, потеряв часть своей скорости, отстают от тех электронов, которые проскочили сетки раньше их и летят впереди. В электронном потоке образуется разрыв.
В следующий миг сетки обмениваются знаками зарядов. На первой сетке, более близкой к электронной пушке, появляется минус, и она начинает отталкивать электроны, подгонять их. На второй сетке минус сменяется плюсом, и она начинает притягивать к себе электроны, то есть тоже ускоряет их движение. И эти электроны покидают сетки, так сказать, с «попутным ветром» и летят с повышенной скоростью.
Вполне очевидно, что они тоже оторвутся от тех электронов, которые движутся позади и занимают их место в междусеточном пространстве. В потоке электронов, миновавших первую пару сеток, образуются обособленные стайки.
Так как электроны, составляющие головной отряд такой стайки, летят с пониженной скоростью, а электроны, оказавшиеся в хвосте стайки, летят с повышенной скоростью, то, очевидно, задние будут нагонять передних, и по мере продвижения вперед стая электронов будет становиться все плотнее и плотнее. Стайка собьется в довольно плотный электронный сгусток, или, как иногда говорят, — «пакет».
Такие электронные стайки-сгустки получаются после каждой смены зарядов на сетках первого резонатора. Следовательно, число электронных сгустков, образующихся за секунду, равно частоте колебаний на сетках, а плотность электронов в каждом сгустке соответствует силе этих колебаний.
Итак, сетки первого резонатора рубят электронный поток на отдельные стаи и уплотняют их, сбивая электроны в «пакеты».
Подлетая к сеткам второго резонатора, который называется улавливателем, эти электронные сгустки-пакеты обрушиваются на них подобно волнам морского прибоя.
Сгустки один за другим проходят сквозь сетки улавливателя и в силу индукции отдают им свою энергию, возбуждая во втором резонаторе колебания той же частоты, что и в первом, но более мощные. Потеряв в улавливателе значительную часть своей энергии, «отработавшие» электроны налетают на коллектор, который выводит их из лампы.
Но невольно возникает вопрос: откуда же берется высокая частота, которой питают первый «бублик»? На это легко ответить — от улавливателя. Внутрь полостей обоих резонаторов введены концы проводника, соединяющего резонаторы между собой (рис. 89).
Это устанавливается между обоими резонаторами связь, благодаря которой клистрон самовозбуждается, как и обычная генераторная лампа с обратной связью в колебательном контуре.
В последние годы чаще всего применяют клистроны, работающие на волнах от 9 до 11 и от 3 до 3,3 см. Но уже изготовляются клистроны и для волн в 7–8 миллиметров.
В вихре магнитного поля
Еще раньше клистрона появился другой прибор, тоже предназначенный для создания очень коротких радиоволн и названный магнетроном.
Магнетроны отличаются от всех остальных радиоламп тем, что управление электронным потоком производится в них не электрическим полем сетки, а магнитным. Если электрическое поле сравнимо с обычным ветром, то магнитное поле — это вихрь или смерч.
Электрон, пересекая магнитное поле, движется по дуге окружности, и чем сильнее поле, тем круче изогнется траектория полета электрона. Электрон в магнитном поле вьется, как песчинка, подхваченная вихрем (рис. 90).