Чтение онлайн

ЖАНРЫ

Шрифт:

Открытие русского ученого

Летом 1897 года учебно-минный отряд Балтийского флота ушел на Транзундский рейд в Выборгском заливе, где обычно производили учебные стрельбы.

По уставу минный офицер, проводивший практические занятия, должен был докладывать в штаб отряда результаты каждой стрельбы. Он сообщал: какая мина благополучно всплыла после выстрела, какая утонула, за какой следует выслать шлюпку. Передать семафором все эти известия было затруднительно, поэтому связь решили организовать с помощью беспроволочного телеграфа.

На транспортном судне «Европа», с которого производились стрельбы, помощник А. С. Попова — . Н. Рыбкин установил передатчик, а на крейсере «Африка», где помещался штаб

отряда, — приемник.

Крейсер 2 ранга «Африка» был очень удобным кораблем для опытов. Его огромные грот и фок-мачты не несли парусного такелажа. Это позволяло поднять антенну на большую высоту и увеличить дальность передачи до пяти километров.

Во время этих опытов А. С. Попов заметил новое и своеобразное явление. Каждый раз, когда между транспортом «Европа» и крейсером «Африка» проходил крейсер «Лейтенант Ильин», передача прерывалась. Приемная станция не слышала работы передатчика. Перерыв продолжался до тех пор, пока суда не сходили с одной линии. Крейсер «Лейтенант Ильин» заслонял собой передатчик. Он как бы «бросал тень» на приемную радиостанцию, и она переставала принимать донесения.

В своем отчете об опытах А. С. Попов правильно оценил огромное значение сделанного им открытия. Он предвидел, что оно со временем может стать необычайно полезным: «применение источников электромагнитных волн на маяках в добавление к световому или звуковому сигналам может сделать видимыми маяки в тумане и в бурную погоду… Направление маяка может быть приблизительно определено, пользуясь свойством мачт, снастей задерживать электромагнитную волну, так сказать, затенять ее».

А. С. Попов начал изучать замеченное явление. Два года спустя, на лекции для минных офицеров в Кронштадте, Попов показывал опыты, поясняющие, как отражаются электромагнитные колебания от металлических зеркал.

Преждевременная смерть прервала важные исследования ученого. Открытие радиотени и отражения электромагнитных волн от металлических предметов — радиоэхо — было на время забыто.

Явления «радиотени» и «радиоэха» были исследованы только в советское время академиками Л. И. Мандельштамом и Н. Д. Папалекси. Они выяснили, как распространяются радиоволны различной длины, нашли законы, по которым эти волны огибают препятствия и кривизну земной поверхности, в каких случаях они отражаются, а в каких поглощаются (рис. 93).

Рис. 93. Распространение длинных, коротких и ультракоротких сантиметровых волн. Ультракороткие волны распространяются по прямой линии, как свет.

Свет огибает те препятствия, размеры которых значительно меньше длины световой волны. Так же ведут себя и радиоволны. Но если свет «не замечает» препятствий в доли микрона, радиоволны легко огибают предметы в десятки метров, — ведь длина волны широковещательной станции измеряется сотнями метров. Поэтому трудно говорить о сходстве распространения длинных волн и света.

Но чем короче радиоволны, чем больше они похожи на световые. Метровые волны дают отчетливую тень от предмета в несколько метров величины, а параболическое зеркало диаметром в 10–12 метров сможет направить их узким, малорасходящимся пучком, похожим на луч прожектора. Чем короче радиоволны, тем легче их направлять в нужную сторону, и тем более мелкие предметы можно ими нащупывать, улавливая волны, отраженные или рассеянные этими предметами.

Основываясь на трудах Л. И. Мандельштама и Н. Д. Папалекси, а также на своих исследованиях, член-корреспондент Академии наук СССР Д. А. Рожанский и профессор Ю. Б. Кобзарев в 1932 году создали проект первого советского радиодальномера. Впоследствии радиодальномер усовершенствовали — появилась радиолокационная станция, определявшая местонахождение цели, то есть направление на цель и расстояние до нее.

Сигнал

возвращается назад

Недавно ученые повторили старинный опыт с летучими мышами. В большом и темном сарае натянули множество веревок и проволок. Затем поймали несколько летучих мышей, но им не стали делать каких-либо операций, не выкалывали глаза, не отрезали уши, а просто залепили мастикой рты и отпустили.

Мыши летать на смогли. Они ударялись о натянутые в сарае веревки, потому что перестали их «видеть».

Оказалось, что мышь в полете издает неслышимые человеческим ухом звуки, так называемые ультразвуки. Человеческое ухо в состоянии слышать звуки, имеющие от 16 до 20 000 колебаний в секунду. Самые низкие звуки, какие только доступны нам, это гудение толстой струны контрабаса. Самый высокий слышимый звук — скрип стеклом по стеклу.

Летучая мышь издает в полете писк, недоступный для нашего уха, имеющий частоту 45 тысяч колебаний в секунду. Она посылает звуки короткими отрывистыми сигналами.

При взлете мышь попискивает 16 раз в секунду. В полете частота ее сигналов увеличивается до 30, а в трудных условиях полета среди натянутых веревок она попискивает 60 раз в секунду.

Рот у летучей мыши устроен рупором. Он направляет звук только вперед. Большие уши служат мышам приемником, которым они улавливают эхо своего писка, отраженного от стен и других препятствий. Звук распространяется в воздухе со скоростью 340 метров в секунду. Мышь летает со скоростью до 20 метров в секунду. Значит, она успевает послать сигнал и получить его отражение — эхо. В этом — секрет уверенного полета мыши. Мышь летит только туда, откуда нет эха, где нет никаких препятствий. Поэтому летучую мышь не обманывает прозрачное стекло, — она слышит эхо от стекла и не летит на него. Летучие мыши — живые локаторы. Мыши пользуются короткими звуковыми волнами, а в радиолокаторах используются очень короткие радиоволны.

Рис. 94. Летучая мышь.

Антенна коротковолновой радиолокационной станции имеет форму вогнутого прожекторного зеркала. Для уменьшения веса ее делают не из сплошных металлических листов, а решетчатой или сетчатой. Такая антенна посылает радиоволны не во все стороны, как широковещательная радиостанция, а узким лучом, подобно прожектеру.

Направление радиолуча можно изменять по желанию: поворачивать антенну, подымать ее или наклонять в любую сторону, как прожектор.

Если поток радиоволн не встретит на своем пути препятствий, то он уходит в межпланетное пространство. Если же встретится какой-либо предмет— корабль, самолет, скала, айсберг, здание, — радиолуч отразится от него и пойдет обратно. Этот отраженный радиосигнал улавливает приемник. Время, которое потратил сигнал на путешествие до цели и обратно, можно точно измерить.

Следовательно, направление на цель с помощью радиолокатора определяется довольно легко. Цель, например самолет или корабль, находится там, откуда вернулось эхо. Указателем направления служит антенна — она «смотрит» на цель. Если цель движущаяся, то. наблюдатель, поворачивая антенну или изменяя ее наклон, может неотступно следить за целью, как следят за самолетом прожектористы, когда его удается «поймать» лучом прожектора.

Современные радиолокационные станции указывают направление цели с точностью в несколько сотых долей градуса. Когда цель расположена примерно в 15 километрах от прибора, то ошибка по вине локаторов составит всего лишь около 10 метров.

Радиолокатор, как и летучая мышь в полете, посылает свои сигналы отдельными, отрывистыми импульсами. Длительность каждого импульса составляет несколько миллионных долей секунды. Передатчик обязан прерывать работу, чтобы приемник в паузах мог улавливать эхо, вернувшееся от цели. «Рот» должен молчать, когда «уши» слушают.

Поделиться с друзьями: