Чтение онлайн

ЖАНРЫ

Шрифт:

Раньше зенитные снаряды, даже при очень меткой стрельбе, зачастую пролетали возле самолета, не причиняя ему никакого вреда. Подсчитано, что на каждый сбитый самолет тратилось до 5000 обычных зенитных снарядов.

Снаряд, снабженный радиолокационными взрывателями, не слеп: он «видит» цель и, оказавшись на расстоянии 15–20 метров от вражеского самолета, взрывается, поражая его осколками (рис. 96).

Рис. 96. Разрез радиовзрывателя зенитного снаряда.

Такими снарядами английская зенитная

артиллерия в годы войны вела огонь по немецким самолетам-автоматам— «Фау-1». До применения «видящих» снарядов, из каждой сотни «Фау-1» удавалось сбить над морем 5–6. Снаряды, снабженные «радиоглазом», изменили это соотношение. Из сотни «Фау-1» Лондона достигали только 4–5, остальные уничтожались огнем зенитной артиллерии.

Первый «разговор» с Луной

В Советском Союзе радиолокаторы быстро нашли себе применение в народном хозяйстве. Они широко обслуживают морской и воздушный транспорт.

Теперь грузовой или пассажирский пароход идет в туманной мгле или ночью так же уверенно, как и в ясный солнечный день. Радиолокатор заранее предупреждает капитана о приближении встречного судна или айсберга, в тумане пересекающего путь корабля. Штурман не сетует на облака, скрывающие от него солнце и звезды и мешающие ему ориентироваться.

Радионавигационные приборы, принимая сигналы радиомаяков, позволяют уверенно вести корабль по заданному курсу. Радиорулевой управляет рулем, не позволяя кораблю «рыскать» и уклоняться в сторону. Радиокурсограф автоматически прокладывает на карте курс, отмечая положение корабля. Точность определения места корабля на расстоянии 2000 километров от радиомаяка весьма велика, ошибка не превышает 100–200 метров.

Когда корабль находится близ суши, радиолокаторы показывают панораму берега — скалы и рифы, прибрежные города и гавани (рис. 97).

Рис. 97. Экран кругового обзора. 1 — самолеты, 2 — кучевые облака, 3 — слоисто-кучевые облака, 4 — озера, 5 — крыши домиков, 6 — место наблюдателя, 7 — след газов от моторов самолета, на котором находится наблюдатель.

Летчик на самолете, снабженном радиолокатором с трубкой кругового обзора, сквозь густые облака видит землю под собой. Яркими ниточками светятся на экране железные дороги, сверкают металлические крыши зданий, темнеют ленточки рек и пятна озер. На экране видна карта местности, над которой летит самолет, и летчик без особого труда может ориентироваться. Благодаря радиолокации и радионавигации так называемый «слепой» полет стал «зрячим».

В короткой, но богатой событиями летописи радиолокации записано замечательное достижение. Вечером 10 января 1946 года, когда взошла Луна, радиосигнал, посланный человеческой рукой, ворвался в межпланетное пространство, достиг Луны и вернулся обратно, чтобы доложить о расстоянии, отделяющем Землю от ее соседа и спутника (рис. 98).

Рис. 98. Радиолокация Луны.

Способ радиосвязи с Луной и ближайшими к Земле планетами указали советские ученые Л. И. Мандельштам и Н. Д. Папалекси. Они же разработали приемы измерения межпланетных расстояний при помощи радиосигналов.

Первый опыт измерения расстояния до Луны показал могущество современной науки.

Когда настанет час старта первого космического корабля, его поведут сигналы астрорадиомаяков, и

радиостанции Земли будут поддерживать с отважными путешественниками непрерывную связь.

Глава одиннадцатая. Свет и ток

Успехи фотоэлемента

Впервые десятилетия своего существования фотоэлемент, как и катодная трубка, был только физическим прибором. Он служил для научных исследований, но практического применения ему не находилось.

Инженеры, совершенствуя фотоэлемент, ничего по существу в нем не изменили. Основные части прибора оставались теми же, что были и у Столетова: два электрода — чувствительный к свету катод с большой поверхностью; анод, имеющий вид небольшого колечка или сеточки; батарея или другой источник постоянного тока.

Оба электрода заключены в стеклянный баллон, из которого выкачан воздух. Современный фотоэлемент похож на электрическую лампочку. Но их сходство только внешнее. Эти приборы имеют совершенно противоположное назначение: осветительная лампочка преобразует электрическую энергию в свет, а фотоэлемент преобразует световую энергию в электрическую.

Когда на катод фотоэлемента падают световые лучи, через прибор идет ток. Чем ярче свет, тем сильнее фототок. Однако даже самый яркий свет рождает в фотоэлементе незначительный по силе ток, измеряемый миллионными долями ампера.

Поэтому физики присоединили к фотоэлементу ламповый усилитель. Через усилитель фотоэлемент может приводить в действие реле — автоматический выключатель тока.

Простейшее реле представляет собой небольшой электромагнит с легким и подвижным якорьком на пружинке. Когда через обмотку электромагнита проходит даже очень слабый ток, — магнит притягивает якорек, а тот, замыкая цепь от какого-либо сильного источника тока, приводит в действие двигатели и механизмы, соединенные с этим источником тока (рис. 99).

Рис. 99. Схема, составленная из фотоэлемента, реле и вентилятора. Лучи света, падая на катод фотоэлемента, включают ток и приводят в движение вентилятор.

Возможно и другое включение реле: когда магнит притягивает к себе якорек, — цепь разомкнута. Но как только ток в обмотке электромагнита прекращается, якорек перестает притягиваться, пружинка отрывает его от сердечника электромагнита и прижимает к контактам источника сильного тока: происходит включение исполнительной цепи.

В союзе с усилительной радиолампой и реле фотоэлемент перестал быть только физическим прибором. Он начал нести службу в промышленности.

Сначала фотоэлемент приспособили для автоматического подсчета изделий на конвейерах и транспортерах.

С одной стороны ленты транспортера поставили маленький фонарик, бросавший поперек ленты узкий пучок параллельных лучей. С другой стороны транспортера, напротив фонарика, поместили фотоэлемент. Световой пучок падал на фотоэлемент, и через фотоэлемент шел ток.

Изделия, двигаясь по транспортеру, проходили мимо фотоэлемента и заслоняли собой свет фонарика. Ток в цепи фотоэлемента прекращался. Электромагнит реле отпускал якорек. Падая, якорек приводил в движение механизм счетчика. Каждый раз, когда изделие преграждало луч света, счетчик прибавлял единицу. Так, изделия, проходя мимо фотоэлемента, считали «сами себя».

Фотоэлемент, соединенный с радиолампой, реле и счетчиком, учитывал готовую продукцию спокойно, аккуратно — дни, недели, месяцы, не утомляясь, не ошибаясь и не требуя особого ухода.

Поделиться с друзьями: