Популярная палеогеография
Шрифт:
На глобальный климат Земли оказывают большое влияние не только морские трансгрессии и регрессии, но и особенно положение литосферных плит. Увеличение площади морей и океанов приводит к господству на Земле влажного и теплого климата, а при регрессии, обычно сопровождаемой повышением гипсометрического положения суши и возникновением расчлененного рельефа, усиливается контрастность в распределении температур и влажности. Но максимальное воздействие на климат Земли оказывало положение материков — их дрейф. В те времена, когда в приполярных районах находилась материковая суша, на Земле наступали оледенения, сильно изменялась циркуляция воздушных масс и морских течений. Такие крупные оледенения происходили в позднеордовикское и позднекарбоновое время, когда вблизи Южного полюса оказывалась суша Гондваны. В то же время, когда на обоих
Установлено, что в распределении тепла и влаги на земной поверхности немаловажную роль играют прозрачность атмосферы и содержание в ней углекислого газа (СО2) и паров воды. Содержание СО2 в атмосфере на протяжении последних 100 млн. лет неуклонно падало, но уменьшение ресурсов углекислоты происходило весьма неравномерно. В отдельные периоды количество СО2 было близким к современному, а в другие — возрастало почти в 10–15 раз. Так, например в кембрии, девоне, раннем карбоне содержание углекислоты превышало 0,4 %, а в конце ордовика и в позднем карбоне составляло всего 0,05 %.
При сравнении характера изменения значений среднеглобальных температур с кривой изменения содержания СО2 в атмосфере выясняется их почти полное единообразие. Эпохи с высоким содержанием атмосферной углекислоты характеризовались существованием высокого термического режима, и наоборот. Колебания ресурсов СО2 в атмосфере определялись тектонической и магматической активностью Земли и регламентировались развитием биосферы. Усиленный приток СО2 в атмосферу был связан с интенсивной вулканической деятельностью и хорошо увязывался с возникновением и ростом крупнейших рифтовых структур и активными перемещениями литосферы. Большой объем карбонатонакопления и увеличение продуктивности растений привели к усиленному расходу атмосферной углекислоты.
Если относительно причины возникновения палеозойских оледенений мы можем судить благодаря неопровержимым геологическим данным, то что же привело к возникновению и развитию четвертичного оледенения? Похолодание, случившееся во второй половине олигоценовой эпохи, и появление первых ледников в Восточной Антарктиде были результатом сильного уменьшения количества атмосферной углекислоты, возникновением пролива Дрейка и образованием широкого пролива между Антарктидой и Австралией, благодаря которым было сформировано крупнейшее течение Западных Ветров. Это циркумантарктическое течение наряду с понижением температур в глобальном масштабе привело к возникновению мощного ледяного покрова Антарктиды.
В дальнейшем похолодание охватило северное полушарие и кроме уменьшения содержания атмосферной углекислоты развитию ледяного покрова в Арктике благоприятствовала сильная морская регрессия. В конце плиоценового времени почти вся площадь современного шельфа Арктики представляла собой низменную сушу и, следовательно, высокое альбедо в полярных широтах наряду с другими факторами было одной из важнейших причин развития оледенения.
Одной из главных причин непредвиденного возрастания среднеглобальных температур в конце 60-х годов XX в. является резкое возрастание количества углекислого газа в атмосфере.
В свою очередь такой подход к рассмотрению причинно-следственных связей климата с атмосферой создает реальные предпосылки для правильного прогноза климата будущего.
Прогноз климата будущего
В последние годы была установлена определенная закономерность между глобальными температурами земной поверхности и концентрацией СО2 в атмосфере. В течение кайнозоя происходило неуклонное снижение ресурсов СО2 в атмосфере и этот процесс ускорился в конце неогена, когда общая масса углекислого газа достигла наименьших значений за всю историю Земли. Под влиянием естественного
убывания содержания СО2 климат изменялся с периодичностью более ста тысяч лет. Этому способствовали гипсометрическое положение суши, морские регрессии, мощность растительного покрова, соотношение площадей суши и водной поверхности и т. д.Вулканические извержения, в результате которых в атмосферу попадает не только углекислота, но и огромный объем тонкой вулканической пыли (это приводит к резкому увеличению альбедо атмосферы, а значит и к снижению температур), также приводили к колебаниям климата.
Исходя из периодического изменения положения Земли в космическом пространстве (согласно гипотезе югославского геофизика М. Миланковича, наклон земной оси периодически изменялся через каждые 40 тыс. лет положение земной орбиты — через 92 тыс. лет, а нахождение ближайшей точки земной орбиты к Солнцу — перигелия — через 21 тыс. лет), советские ученые Ш. Г. Шараф и Н. А. Будникова вычислили, что слабые оледенения на Земле могут наступить через 170, 215, 269 и 335 тыс. лет, а сильные оледенения через 505, 620, 665 и 715 тыс. лет. Если не учитывать деятельности человека, то примерно через 10–15 тыс. лет в высоких широтах должно произойти существенное снижение радиационного баланса. Это приведет к развитию оледенения. В дальнейшем радиация вновь возрастет, что приведет к разрушению ледникового покрова. По расчетным данным, уменьшения радиации могут повторяться через каждые 40 и 90 тыс. лет, причем амплитуды их будут возрастать.
Если учесть, что за последние 30–40 млн. лет происходило неуклонное снижение ресурсов СО2 в атмосфере, то надо полагать, что в будущем эта естественная убыль углекислоты сохранится. Учитывая общую тенденцию снижения концентрации СО2 в атмосфере, можно предсказать время наступления полного оледенения планеты. Оно должно произойти тогда, когда концентрация СО2 в атмосфере станет меньше 0,015 %. Согласно расчетным данным это наступит примерно через 1 млн. лет.
Снижение концентрации углекислого газа в атмосфере могло бы привести не только к понижению температурного режима, но и к постепенному сокращению продуктивности растений и уменьшению общей массы живых организмов.
Такой пессимистический вывод не должен вызывать особых тревог, поскольку в нем не учитывается хозяйственная деятельность человека — фактор, имеющий огромное влияние на формирование климата. Так, например, в начале XX в. концентрация углекислого газа в атмосфере составляла 0,029 %, а в настоящее время — 0,033 %. Человечество оказывает активное влияние на окружающую среду. Только за последние десятилетия в результате сжигания различных видов жидкого и твердого топлива в атмосфере не только наблюдались повышения температур, но и увеличение концентрации СО2.
Увеличение содержания углекислого газа в атмосфере почти на 0,003 %, которое произошло за два-три десятилетия, компенсирует естественную убыль СО2 за 200 тыс. лет. И это произошло, несмотря на все возрастающую вырубку лесов и существование активных поглотителей углекислоты — морей и океанов. Следовательно, хозяйственная деятельность человека не только существенно замедлила процесс естественной убыли углекислоты в атмосфере, но и привела к ее возрастанию.
Если даже представить себе, что в ближайшем будущем полностью прекратится выброс в атмосферу СО2, что само по себе маловероятно, то имеющейся концентрации углекислого газа в атмосфере будет вполне достаточно для того, чтобы оттянуть время наступления оледенения на десятки и даже сотни тысяч лет. Вместе с тем при сохранении масштабов современного воздействия человека на атмосферу, а оно имеет определенные тенденции к резкому возрастанию, вероятность глобального оледенения Земли в будущем сводится к нулю.
Однако людям важно знать не только то, что будет через миллионы или тысячи лет, но и то, что ждет нас в самом ближайшем будущем. В предстоящие десятилетия основное воздействие на климат будут оказывать по крайней мере три главных фактора: рост производства различных видов топливной энергетики; увеличение содержания углекислого газа в атмосфере в результате активной хозяйственной деятельности людей; изменение концентрации атмосферного аэрозоля, т. е. небольших, пылеватых частиц в атмосфере.