Сумма технологии
Шрифт:
А теперь займемся следующей частью нашего введения в «пантокреатику», то есть в названное так условно для удобства и опирающееся на общую теорию физических и математических систем умение достигать всякие, в том числе и не реализованные Природой, цели.
Хаос и порядок
КАК КАНДИДАТЫ в творцы, мы должны сначала заняться хаосом. Что есть хаос? Если приданном событии Хв Амогут произойти всевозможные события в Bи если такая независимость наблюдается повсеместно, то перед нами хаос. Если же событие Xв Аограничивает определенным образом то, что может произойти в В,то между Аи Ввозникает связь. Если событие Xв Аограничивает события в Воднозначно (поворачиваем выключатель – зажигается лампа), связь А–Вбудет детерминированной. Если событие Xв Аограничивает события в Втак, что после события Xв Амогут произойти в Всобытия Uили Y,причем Uпосле Хв Апроисходит в 40 случаях из 100, a Y– в 60 случаях, то связь Аи Вявляется вероятностной.
Давайте теперь рассмотрим, возможен ли другой «тип» хаоса, а именно такой, чтобы господствующие в нем связи были полностью неопределенными (то есть не детерминированными и не вероятностными), ибо нам известно, что и при том и при другом варианте имеется некий порядок. Допустим, что после события Хв Аодин
149
Пример упрощен и поэтому неточен. В данном случае наблюдается регулярность: каждый раз из В выбирается новое событие. Чтобы получить настоящий «хаос», нужно установить, что в большой серии испытаний (порядка 10 23) распределение исходов почти равномерно (то есть отклонение меньше обратного количества испытаний). (Прим. ред.)
Все это говорится не из желания имитировать хаос, а с целью показать, что экспериментатор, а значит, и наука способны обнаружить не всякий вид порядка, то есть присутствия связей [150] .
Если событие Хв Аограничивает возможные события в В,то мы говорим, что между Аи Всуществует связь. Поскольку событие Xв А визвестной мере определяет то, что произойдет в В,эту связь можно использовать для передачи информации. Это заодно означает существование организации: Аи Всоставляют некоторую «систему».
150
Данный вид «хаоса» носит название псевдослучайной последовательности, то есть такой, которая, хотя и построена по некоторой закономерности, в целом ведет себя при большом числе испытаний, как и хаотическая. Более сложен пример, когда загорающаяся лампочка отвечает очередной значимой цифре произвольного трансцендентного числа, например, я, начиная, скажем, с тысячной. Для наблюдателя, не знакомого с устройством системы, такая последовательность будет казаться хаотической при сколь угодно большом числе опытов. (Прим. ред.)
В Природе существует бесконечное количество связей. Однако не все они в одинаковой степени определяют поведение системы или ее частей. В противном случае нам пришлось бы иметь дело с таким количеством существенных переменных, что наука была бы невозможной. Неодинаковый характер связей означает наличие меньшей или большей изоляции системы от остальной части Космоса. На практике мы опускаем как можно больше связей, то есть несущественных переменных [151] .
151
Вновь речь идет о процедуре выделения уровня исследования, то есть о переходе от системы к ее модели. Заметим здесь, что такая процедура подразумевает проверку замкнутости: при дальнейшей работе с моделью системы отброшенные степени свободы (связи, элементы структуры) не должны возникать вновь в качестве «скрытых параметров». (Прим. ред.)
Связь Аи В,которая суживает возможные состояния В,наблюдаема как некоторое ограничение. Ограничение чего? «Неограниченных возможностей»? Нет, количество их не бесконечно. Это – ограничение в рамках множества возможных состояний для В. Но откуда мы знаем, какие состояния возможны? Основываясь на нашем прежнем знании? Но что есть знание? Знание – это ожидание определенного события после того, как произошли некоторые другие события. Кто не знает ничего, может ожидать всего. Кто знает что-то, тот считает, что может произойти не все, а лишь некоторые явления, иные же не произойдут. Следовательно, знание – это ограничение разнообразия, и оно тем больше, чем меньше неуверенность ожидающего.
Представим себе, что мистер Смит, банковский служащий, живет у своей тетки – дамы очень строгих правил, сдающей комнату барышне. Передняя стена их двухэтажного домика сделана из стекла, благодаря чему ученый наблюдатель может с другой стороны улицы видеть все, что делается внутри. Пусть то, что находится внутри домика, будет «космосом»; мы должны его исследовать. Количество «систем», которые можно выделить из этого «космоса», практически бесконечно. Можно рассматривать его, например, «поатомно». В таком случае мы имеем множества молекул, из которых сделаны стулья, столы и тела троих человек. Люди передвигаются, и мы хотим предсказывать их будущие состояния. Поскольку каждое тело состоит из 10 25молекул, следовало бы начертить три раза по 10 25траекторий этих молекул, то есть их пространственно-временных линий. Это не самый удачный подход, так как, пока мы установим одни лишь начальные молекулярные состояния Смита, девушки и тетки, пройдет 15 миллиардов лет; эти люди будут в могиле, а мы не успеем описать аналитически даже их первый завтрак. Количество рассматриваемых переменных зависит от того, что, собственно говоря, мы хотим исследовать. Когда тетка спускается в погреб за овощами, мистер Смит целует квартирантку. Теоретически, на основе анализа поведения молекул удалось бы даже установить, кто кого поцеловал, но практически – мы уже об этом говорили – наше Солнце успеет раньше погаснуть. Мы были излишне усердны; вполне достаточно рассматривать наш «космос» как систему, состоящую из трех тел. В нем периодически наблюдаются сближения двух тел, когда третье спускается в погреб. Вначале появляется Птолемей нашего «космоса». Он видит, что два тела сближаются, когда третье удаляется. Поэтому он создает чисто описательную теорию: рисует необходимые окружности и эпициклы, благодаря чему заранее становится известно, какие положения примут два верхних тела, когда третье окажется в самом нижнем положении. При этом так уж получилось, что в самом центре окружностей, которые нарисовал Птолемей, находится мойка, и он приписывает ей свойства очень важного центра этого «космоса». Все вращается вокруг мойки. Астрономия потихоньку развивается. Приходит Коперник, ниспровергает «мойко-центрическую» теорию, а после него Кеплер чертит гораздо более простые по сравнению с Птолемеевыми траектории трех тел. Затем появляется Ньютон. Он заявляет, что поведение тел зависит от их взаимной привлекательности, то есть силы притяжения. Мистер Смит притягивает квартирантку, а она его. Когда тетка близко, оба вращаются вокруг нее, потому что сила притяжения тетки соответственно больше. Теперь мы уже умеем все прекрасно предвидеть. И вдруг появляется Эйнштейн нашего «космоса», который подвергает критике теорию Ньютона. Он считает, что постулат действия каких-то сил совершенно излишен. Он создает теорию относительности, в которой поведение системы определяется геометрией четырехмерного пространства. «Эротическое притяжение» исчезает, точно так же как исчезает притяжение в настоящей теории относительности. Оно заменяется искривлением пространства вокруг тяготеющих масс (в нашем случае – эротических масс). И тогда сближение траекторий мистера Смита и квартирантки определятся некоторыми кривыми – назовем их эротодезическими. Присутствие тетки вызывает такую деформацию эротодезических кривых, что соединение квартирантки со Смитом исключается. Новая теория более проста, так как не утверждает наличия каких-то «сил» и все сводит к геометрии пространства. И уж особенно хороша ее основная формула (энергия поцелуев равна произведению эротических масс на квадрат скорости звука, ибо как только за теткой захлопываются двери и этот звук походит до Смита и квартирантки, они тотчас же бросаются друг другу в объятия).
Потом, однако, приходят новые физики, и среди них Гейзенберг. Они убеждаются в том, что Эйнштейн действительно хорошо предсказывал динамические состояния системы (состояние целования, нецелования и т. д.), но более точные наблюдения при помощи огромных оптических приборов, позволяющих следить за отдельными тенями рук, ног и голов, показывают, что можно различать там такие переменные, которые не были учтены теорией эротической относительности. Эти физики не оспаривают существования эротической гравитации, однако, наблюдая мелкие элементы, из которых состоят космические тела (то есть руки, ноги, головы), они замечают индетерминизм их поведения. Например, руки мистера Смита при целовании не всегда принимают одно и то же положение. Так-то и начинается создание новой области науки, называемой микромеханикой мистера Смита, тетки и квартирантки. Это статистическая, вероятностная теория. Детерминированно ведут себя большие части системы (едва лишь двери закроются за теткой, мистер Смит и квартирантка тотчас же и т. д.), однако это является результатом суммарного действия
индетерминистических закономерностей. Но тут-то и начинаются подлинные трудности, так как нельзя перейти от микромеханики Гейзенберга к макромеханике Эйнштейна. Тела как единое целое ведут себя детерминированно, но ухаживания происходят по-разному. Эротической гравитацией можно объяснить не все. Почему иногда Смит берет квартирантку за подбородок, а иногда нет? Статистики множатся. И вдруг бомба: руки и ноги не являются неделимыми элементами, они делятся на плечи, предплечья, бедра, икры, пальцы, ладони и т. д. Количество «элементарных частиц» устрашающе растет. Уже нет никакой единой теории их поведения, и между общей теорией эротической относительности и квантовой микромеханикой (был открыт квант ласкания) зияет непреодолимая пропасть. Действительно, согласование теории гравитации и квантовой теории (для настоящего Космоса, а не для того, из нашей шутки) – это не решенный до сих пор вопрос. Говоря с общих позиций, каждую систему можно определить таким образом, что она будет состоять из любого заданного числа частей, после чего в свою очередь можно заняться раскрытием связей между этими частями. Если мы хотим предсказывать только некоторые общие состояния, нам достаточно иметь теорию с небольшим количеством переменных. Если же мы исследуем системы все более дробные по отношению к предыдущим, проблема усложняется. Звезду от звезды изолирует Природа, но изолировать отдельные атомные частицы должны мы сами: это одна из тысяч забот. Необходимо выбирать такие описания, в которых при минимуме принятых во внимание переменных достигается возможно большая точность предсказаний. Наш пример был шуткой, так как поведение этих трех лиц невозможно описать детерминистически. Для этого им не хватает достаточной регулярности поведения. Подобный подход возможен и, пожалуй, напрашивается сам собой, когда система проявляет большую регулярность и значительную степень изоляции. Эдакое встречается на небесах, но не в квартире. Однако при возрастании числа переменных даже в астрономии появляются трудности применения дифференциальных уравнений. К таким трудностям приводит уже определение траекторий трех тяготеющих тел, а для шести тел такие уравнения и вовсе невозможно решить.Наука существует благодаря тому, что она создает упрощенные модели явлений, опускает менее существенные переменные (например, принимает, что массы сравнительно малых тел системы равны нулю) и ищет инварианты.Таким инвариантом является, например, скорость света [152] . В настоящем Космосе инварианты получить легче, чем в квартире тетки. Если (причем вполне обоснованно) поцелуй мы не склонны считать явлением столь же универсальным, как и гравитация, но хотим узнать, почему Смит целует квартирантку, то мы попали впросак. При всех своих ограничениях математическая механика настолько универсальна, что позволяет рассчитывать на тысячи и миллионы лет вперед положения космических тел. Однако как рассчитать пути импульсов мозга мистера Смита, чтобы предвидеть «оральные коинциденции» с девушкой или, выражаясь не столь научно, просто поцелуи? Если бы даже это и было возможным, символическое описание последовательных состояний мозга оказывается более сложным, чем само явление (то есть прохождение импульсов в нейронной сети). При таком положении вещей нейронный эквивалент акта чихания – это том, переплет коего нужно раскрывать подъемным краном. На практике математический аппарат увязнет в создавшихся сложностях намного раньше, чем заполнится такой том. Что же остается? Признать само явлениенаиболее совершенным своим описанием, заменить аналитическую деятельность – деятельностью созидательной. Одним словом, остается имитационная, подражательная практика.
152
Неточность, которая вполне может обернуться ошибкой. Скорость света является размерной константой, а не инвариантом. Размерные константы (к которым, кроме скорости света, относятся, например, постоянная Больцмана, постоянная Планка, диэлектрическая постоянная и пр.) зависят исключительно от системы единиц измерения и заключают в себе не свойства физического мира, но историю физики. Суть размерной константы в том, что для измерения одной и той же физической величины исторически используются разные эталоны. Например, температура представляет собой меру кинетической энергии молекул, однако энергию принято измерять в джоулях (то есть килограммах, метрах и секундах: джоуль равен кг*м 2/сек – 2), а температуру – в Кельвинах (одна сотая интервала между замерзанием и кипением воды при нормальных условиях). Постоянная Больцмана связывает эти величины между собой. Аналогично, скорость света связывает единицы измерения длины по пространственным осям (метры) и по временной оси (секунды). Всегда можно построить такую систему единиц измерения, в которой размерные константы равны единице.
Инвариантом в теории Эйнштейна является, разумеется, не скорость света, а интервал – величина, играющая в эйнштейновской четырехмерной вселенной ту же роль, которую в трехмерной вселенной Ньютона играют время и расстояние. (Прим. ред.)
Сцилла и Харибда, или Об умеренности
МЫ НАХОДИМСЯ в самом опасном месте наших рассуждений. Мы поставили много вопросов, но все время оттягивали ответы на них. Мы дали много обещаний, снабженных столь выспренними названиями, как «пантокреатика»; мы сказали кое-что о хаосе, дошли до праначал «имитологии», и все это неуклонно толкало нас к новым проблемам. Это вопрос о математике и ее отношении к реальному миру, на этот раз к здешнему миру, проблема языка и семантики, разные виды «бытия», одним словом, мы приближаемся к области бездонных философских вопросов, в которых может бесследно потонуть весь наш конструкторский оптимизм. И дело не в том, что все эти проблемы чрезмерно сложны, что любая из них заняла бы по крайней мере целый том, если не целую библиотеку, и даже не в том, что нам не хватает всесторонней компетенции. Суть дела в том, что компетенция наша нам не пригодится, так как все это спорные проблемы. Это я должен объяснить поточнее. Книги, популяризующие нынешнее состояние знаний – скажем, знаний в области физики, – причем популяризующие хорошо, представляют дело так, будто существуют две четко отделенные друг от друга области: область того, что наукой уже раз и навсегда установлено, и того, что еще до конца не выяснено. Это похоже на посещение прекрасного, снизу доверху великолепно обставленного здания, его отдельных покоев, где то тут, то там лежат на столах нерешенные головоломки. Мы покидаем сей храм с уверенностью, что эти загадки рано или поздно будут решены, в чем убеждает нас великолепие всей постройки. У нас даже не мелькнет и мысли, что решение этих головоломок может привести к разрушению половины здания. Такое же впечатление производят на нас учебники математики, физики или теории информации. На первый план выдвигается впечатляющая конструкция. Неясные проблемы укрыты от наших глаз лучше, чем в популярной лекции, ибо популяризатор (я имею в виду популяризатора-ученого) понимает, какой потрясающий эффект вызывает появление Тайны во время лекции. Напротив, автор учебника (например, университетского) прежде всего печется о прочности представляемой конструкции, о ее монолитности; он ни во что не ставит какие-то там эффекты и не чувствует себя обязанным переводить многоэтажные формулы на обыденный язык, что позволяет ему легче избегать спорных интерпретаций. Конечно, тот, кто знает предмет, сориентируется, сколь многими способами можно толковать материально-физическое значение всей этой символики квантовых уравнений, какие бездны противоборствующих точек зрения скрывает в себе та или иная формула. Он поймет также, что другой теоретик написал бы книгу, во многих местах расходящуюся с той, которая лежит перед ним.
Все это понятно и необходимо, так как нельзя ни популяризировать, ни учить, сразу вводя в гущу споров по актуальным вопросам. Читатель популярной книги и без того не примет участия в решении этих вопросов, а человек, посвятивший себя науке, должен вначале познать ее оружие и конфигурацию поля боя, пройти муштру и усвоить основы тактики, прежде чем сможет принять участие в ее стратегическом совете. Однако нашей целью не является ни популяризация того, что уже создано, ни приобретение в какой-либо степени профессиональных знаний. Мы хотим заглянуть в будущее.
Если бы мы раздули наши притязания до чудовищных размеров и захотели бы сразу оказаться на самых вершинах науки, там, где спор ведут не популяризаторы или авторы учебников, а сами создатели того, что затем изучается и распространяется, если бы мы осмелились принять участие в их спорах, то это было бы чем-то худшим, чем просто комическая ситуация. Это была бы ошибка. Оставим комичность – что, собственно говоря, мы стали бы делать? Допустим, что мы понимаем все, что говорят специалисты в области теории информации, математики или физики, высказывающиеся в пользу тех или иных взглядов. Эти взгляды противоречивы. Концепция квантования пространства непримирима с классической квантовой механикой. «Скрытые параметры» элементарных частиц существуют или не существуют. Бесконечность скорости распространения процессов в микромире противоречит принципу конечности скорости света [153] .
153
С современной точки зрения все три приведенные автором примера неверно сформулированы и не несут в себе противоречия. Квантование пространства ни в коем случае не противоречит основаниям классической квантовой механики (точнее было бы сказать «квантовой теории поля»), другой вопрос, что построение квантовой механики в дискретном (квантованном) пространстве наталкивается на ряд математических трудностей. Проблема «скрытых параметров» была сформулирована на заре квантовой механики. Суть ее в гипотетическом существовании у частицы неких характеристик, не измеримых на макроуровне, но существенно влияющих на ее поведение на микроуровне. Иными словами, предполагалось, что необходимость в квантовомеханическом описании мира возникает лишь постольку, поскольку мы не можем учесть все параметры, оказывающие влияние на движение, в том числе – скрытые. Если бы, однако, это удалось, мы вернулись бы к классическому пониманию движения. То есть вероятностный квантовый подход связан не со свойствами реального мира, но лишь описывает степень нашего незнания. Первоначально проблема «скрытых параметров» мыслилась как чисто философская, позднее удалось доказать, что «чистая квантовая механика» и «квантовая механика, основанная на модели „скрытых параметров“, различаются предсказаниями некоторых очень тонких эффектов. В 1980-е годы удалось поставить решающий эксперимент, который точно доказал, что модель „скрытых параметров“ ошибочна. Сейчас эта концепция относится к истории науки.
Последний приведенный С. Лемом пример «ошибочен вдвойне». Во-первых, принцип постоянства скорости света был установлен для макромира и, строго говоря, он и не обязан выполняться в микромире (подобно принципу возрастания энтропии). А во-вторых, квантовомеханические процессы согласуются с эйнштейновской концепцией пространства-времени, то есть принцип постоянства скорости света в микромире выполняется. (Прим. ред.)