Теория статистики: конспект лекций
Шрифт:
На практике меру вариации более объективно отражает показатель дисперсии ( 2 – средний квадрат отклонений), определяемый как средняя из отклонений, возведенных в квадрат (х – х1)2 :
Корень квадратный из дисперсии 2 среднего квадрата отклонений представляет собой среднее квадратическое
Среднее квадратическое отклонение – это мерило надежности средней.
Свойства дисперсии (доказываемые в математической статистике), которые позволяют упростить расчеты:
1) если из всех значений вариант отнять какое–то постоянное число А2 , то средний квадрат отклонений от этого не изменится;
2) если все значения вариант разделить на какое–то постоянное число А, то средний квадрат отклонений уменьшится от этого в А2 раз, а среднее квадратическое отклонение – в А раз
3) если исчислить средний квадрат отклонений от любой величины А, которая в той или иной степени отличается от средней арифметической х, то он всегда будет больше среднего квадрата отклонений 2 , исчисленного от средней арифметической.
Показатели относительного рассеивания
Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах, которые позволяют сравнивать характер рассеивания в различных распределениях. Расчет показателей меры относительного рассеивания осуществляют отношением абсолютного показателя рассеивания к средней арифметической и умножают на 100%. Виды дисперсий и закон сложения дисперсий При помощи группировок, подразделив изучаемую совокупность на группы, однородные по признаку–фактору, можно определить три показателя колеблемости признака в совокупности: общую дисперсию, межгрупповую дисперсию и среднюю из внут–ригрупповых дисперсий.
Общая дисперсия характеризует вариацию признака, зависящую от всех условий в изучаемой статистической совокупности. Исчисляется общая дисперсия по формуле:
где х0 – общая средняя для всей изучаемой совокупности.
2. Характеристика закономерности рядов распределения
С помощью рядов распределения решается важнейшая задача статистики – характеристика и измерение показателей колеблемости для варьирующих признаков.
В вариационных рядах существует определенная связь в изменении частот и значений варьирующего признака: с увеличением варьирующего признака величина частот вначале возрастает до определенной величины, а затем уменьшается. Такого рода изменения называются закономерностями распределения.
Положение кривой распределения на оси абсцисс и ее рассеивание являются двумя наиболее существенными свойствами кривой. Важные свойства кривой распределения – это степень ее асимметрии, высоко–или низковершинность, которые в совокупности характеризуют форму или тип кривой распределения.
Важная задача – это определение формы кривой, так как статистический материал в обычных условиях дает по определенному признаку характерную, типичную для него кривую распределения. Всякое искажение формы кривой –
это нарушение или изменение нормальных условий возникновения материала: появление двухвершинной или асимметричной кривой говорит о разнотипном составе совокупности и о необходимости перегруппировки данных в целях выделения более однородных групп.Характер общего распределения предполагает оценку степени его однородности и вычисление показателей асимметрии и эксцесса.
Симметричным называют распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой.
Для симметричных распределений средняя арифметическая мода и медиана равны между собой. Простейший показатель асимметрии основан на соотношении показателей центра распределения.
Наиболее точным и распространенным является показатель основанный на определении центрального момента третьего порядка.
Общим является нормальное распределение, которое может быть представлено графически в виде симметричной куполообразной кривой. В сущности, распределения редко бывают точно асимметричны, поэтому нормальная кривая представляет собой идеализированную форму распределения.
Куполообразная форма кривой показывает, что большинство значений концентрируется вокруг центра измерения, и в действительно симметричном одновершинном распределении средняя, мода и медиана совпадут.
Закон нормального распределения предполагает, что отклонение от среднего значения является результатом большого количества мелких отклонений, что позитивные и негативные отклонения равновероятны и что наиболее вероятным значением всех в равной мере надежных измерений является их арифметическая средняя.
Общие условия вариации признака отражены в характере и типе закономерностей распределения: сущность явления и те его свойства и условия, которые определяют изменчивость варьирующего признака.
Теоретической кривой распределения называют кривую распределения, которая выражает общую закономерность данного типа.
Огромное значение в теории выборочного метода имеет нормальная кривая, так как стандартные средние отклонения, рассчитанные по случайным выборкам, тяготеют к нормальным в случае больших размеров выборок, если даже совокупность не является нормально распределенной.
В кривой нормального распределения отражается закономерность, которая возникает при взаимодействии множества случайных причин.
Для симметричных распределений рассчитывается показатель эксцесса (островершинности).Т. Б. Линдбергом предложен такой показатель:
Ех = n – 38,9,
где п – доля (%) количества вариантов, лежащих в интервале, равном половине среднего квадратического отклонения в ту и другую сторону от х.
Эксцесс – выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения.
Оценка показателей асимметрии и эксцесса дает возможность сделать вывод о том, можно ли отнести данное эмпирическое распределение к типу кривых нормального распределения.
ЛЕКЦИЯ № 9. Выборочное наблюдение
1. Определение выборочного наблюдения
Статистические исследования очень трудоемки и дороги, поэтому возникла мысль о замене сплошного наблюдения выборочным.