Всемирный разум
Шрифт:
К 2007 году в распоряжении Дейсерота и Бойдена оказалось все необходимое для проведения экспериментов с оптогенетикой над животными.
1. «Включатель» (ON switch) – ген ченнелродопсин (channelrhodopsin).
2. «Выключатель» (OFF switch) – ген халорходопсин (halorhodopsin).
3. «Прирученный вирус» (tamed virus) – покорное им орудие доставки генов внутрь клетки.
4. Методика, позволявшая вводить малые количества «прирученных вирусов» в строго определенный объем мозговой ткани.
5. «Промоутер», обеспечивающий избирательное действие по отношению к нервным клеткам. Если экспериментаторам нужно было, чтобы ченнелродопсин работал только в нейронах определенного типа и ни в каких иных, то решение данной задачи обеспечивало применение «промоутера» с определенными свойствами.
6. Технология введения оптоволоконного кабеля сквозь отверстие в черепе для
В августе того же года Дейсерот и его рабочая группа создали свою мышь, бегавшую против часовой стрелки (counterclockwise mouse). Они ввели ченнелродопсин в переднюю правую область двигательной коры головного мозга мыши – то есть в тот участок, который контролирует левую ногу. Когда по кабелю пошел световой сигнал, зверек побежал по кругу налево [124] . Это стало принципиальным доказательством, которое и требовалось ученым. Дейсерот немедленно ориентировал свою лабораторию на исследования, касающиеся болезни Паркинсона. Нейробиолог собрал всю обзорно-аналитическую информацию о том, почему в некоторых случаях помогает электростимуляция. Предположений оказалось больше, чем фактов. Согласно одной из версий, электрический ток должен подавлять избыточную активность так называемых субталамических нервных ядер (subthalamic nucleus, STN). Согласно другой, он стимулирует вспомогательные клетки (support cells), расположенные вокруг субталамических нервных ядер, – благодаря чему усиливается выработка необходимого нейротрансмиттера. Однако ни одна из гипотез не могла быть проверена на деле. Не было никакой возможности гасить возбуждение именно субталамических ядер – точно так же, как и средств для избирательного стимулирования только вспомогательных клеток.
Благодаря оптогенетике теперь такая возможность появилась. В 2008 году Дейсерот и его студенты начали работать с мышами, половина мозга которых была поражена болезнью Паркинсона. Применяя инструменты оптогенетики, они блокировали возбуждение субталамических ядер у одной группы лабораторных мышей и одновременно стимулировали вспомогательные нервные клетки у другой. Если зверьки в одной из групп начнут двигаться нормально, как здоровые особи, сразу станет ясно, какая из двух гипотез верна.
Однако, к смущению и тревоге экспериментаторов, ни в одной из двух групп мыши не стали двигаться нормально. Ничего не изменилось. Совершенно.
Однако двое выпускников из команды Дейсерота – Вивиана Градинару (Viviana Gradinaru) и Муртаза Могри (Murtaza Mogri) – на этом не остановились. Существовала еще третья гипотеза: аксоны субталамических ядер стимулирует электрический ток – вследствие чего восстанавливается нормальная деятельность нервных клеток. Проверить это предположение было труднее, потому что работать предстояло не с клетками нервных ядер, а с их аксонами. То есть примерно то же самое, что играть на пианино, но удары по клавишам должны передаваться не непосредственно касающимся струн молоточкам, а другим – тем, которые будут бить по последним.
Опыт за опытом проваливались. «То было время разочарований, – писал мне Дейсерот. – По этой причине проект почти закрыли: мы никак не могли показать те результаты, которые имели бы терапевтическое значение». И вдруг – как раз тогда, когда они были почти готовы все остановить (оставалась лишь последняя группа мышей, предназначенных для эксперимента), – все получилось. Мышь пошла. Лиза Гунайдин (Lisa Gunaydin), одна из членов команды, рассказывала об этом так: «Мы прыгали до потолка, потому что немедленно поняли, какого результата добились. Разница, по сравнению с прежними опытами, была принципиальная». В научной статье, опубликованной в апреле 2009 года, Градинару писала: «Эффект был явно выраженным. Практически во всех случаях лабораторные животные, имевшие выраженные признаки паркинсонизма, полностью восстанавливались и обнаруживали поведение, неотличимое от нормального» [125] .
Самое главное заключалось в том, что ученые смогли устранить симптомы болезни. И добиться этого удалось с помощью электрического тока. Не менее важной стала и ясность с тем, какие именно участки мозга требуют вмешательства. Иными словами, благодаря оптогенетике терапевтическое воздействие на мозг можно было сделать целенаправленным и абсолютно точным. Прощайте, побочные эффекты!
Вернувшись в Массачусетский технологический, Эд Бойден поставил на повестку дня очевидный вопрос: насколько все это применимо к людям? Имелись основания полагать, что может быть применимо. Природа стремится сохранить
структуры, показавшие свою жизнеспособность. В процессе эволюции многоклеточные организмы вырабатывают энзимы, катализирующие основные обменные процессы в клетках. Существа, находящиеся на более высоких уровнях развития, в своей жизнедеятельности стремятся использовать эти природные катализаторы – вместо того, чтобы начинать все, так сказать, с чистого листа. Человеческий мозг сложнее мышиного, но допамин у нас в головах работает примерно так же. Фактически, гены любого из нас и скромного моллюска Aplysia (морской заяц) совпадают примерно наполовину – и это значит, что основные биохимические процессы мало чем различаются. Гены человека и мыши совпадают почти на 90 %. Следовательно, если что-то получилось в эксперименте с последней, то есть шанс на успех и с первым.Однако Бойден не мог так легко экспериментировать на людях. Представьте, что вы говорите пациенту с болезнью Паркинсона: «Мы намерены генетически изменить ваш головной мозг инъекцией вирусов, содержащих гены, взятые у водорослей. А затем мы введем вам под череп источник света…» Несомненно, человек потребует некоторые данные, подтверждающие безопасность этих действий для подопытного!
В 2008 году Бойден и Хан начали экспериментировать с макаками-резусами, мозг которых относительно близок к человеческому. Ученые вводили жидкость с вирусами в небольшие области переднего мозга (forebrain) обезьян и при помощи оптоволоконного кабеля воздействовали на них сине-голубым и желтым светом. Одна из подопытных была на особом положении: ее нервные клетки засвечивали по несколько минут ежедневно – неделя за неделей в течение девяти месяцев. Как и надеялись экспериментаторы, нейроны возбуждались и успокаивались точно по команде. И спустя указанное время нервные клетки этой макаки остались неповрежденными и могли нормально функционировать [126] .
Последнее обстоятельство было критически важным. Оно свидетельствовало, что генетические изменения не причинили обезьянам вреда. В 1999 году девочка-подросток по имени Джесси Джелсингер (Jesse Gelsinger) умерла в клинике при лечении болезни печени с помощью генной терапии. Причиной ее гибели стала реакция иммунной системы на введенный врачами вирус. Ни один из тех, кто занимается генной терапией, никогда не забывает о Джесси.
Однако обезьянки были в полном порядке. Их мозги не повредились. Бойден и Хан сообщили о полученных результатах в апреле 2009 года. Джейми Хендерсон (Jaimie Henderson), нейрохирург из Стэнфорда, нашел эту новость весьма многообещающей. Для глубокой стимуляции мозга он часто имплантировал электроды пациентам с болезнью Паркинсона, поэтому ограничения данного метода были ему хорошо известны. Как и Дейсерот, он хотел делать больше. Значит, исследования в области оптогенетики следовало превратить в технологию, применимую на практике.
Хендерсон сделал технический рисунок устройства, чем-то напоминавшего эскимо, уменьшенное втрое. Оно представляло собой контроллер размером со спичечный коробок, подсоединенный к стержню. На верхушке последнего были смонтированы четыре светодиода. Ученый попросил коллегу-физика из того же Стэнфордского университета сделать опытный образец. Теперь этот прибор стоял на рабочем столе Хендерсона, ритмически – по щелчку выключателя – загораясь сине-голубым светом. Очень симпатичный прибор. Отличное воплощение принципов нейротехнологии.
Глубокая стимуляция мозга требует ввести электроды на глубину в несколько дюймов. Нелегкая задача, если на стержне помещены четыре светодиода. Однако работа Градинару и Могри открыла одну заманчивую возможность. Они доказали необходимость стимулирования аксонов, связанных с субталамическими ядрами. И эти аксоны подходят очень близко к поверхности мозга. Следовательно, можно «заякорить» электрод прямо под черепом. И тогда же ввести внутрь мозговой ткани необходимые гены. Элегантное и точное технологическое решение вкупе с несложной хирургической операцией.
Но Хендерсон понимал, что до широкого практического применения еще далеко. В 2009 году соответствующие опыты над приматами начались в Стэнфордском университете. В случае успеха ученые должны обратиться в Управление по контролю за качеством пищевых продуктов и лекарств США (FDA – Food and Drug Administration) и получить разрешение на продолжение опытов, но уже на людях. Если все пойдет хорошо, то оборудование, имеющее коммерческую ценность и предназначенное для выхода на рынок, появится, возможно, лет через пять или чуть больше. И лечение болезни Паркинсона при этом окажется только началом. Так сказать, тем плодом, который висит на нижней ветке.