Яды и противоядия
Шрифт:
Согласно одним данным, активаторы вмешиваются в функции генетических систем синтеза ферментных (белковых) структур посредством ускорения образования молекул информационной РНК.
С другой стороны, полагают, что на молекулярном уровне эффект ингибиторов может заключаться в конкурентном их взаимодействии с ферментами — катализаторами превращений ядов в организме. Например, установлено, [216] что препарат SKF-525A реагирует с активными центрами фермента N-деметилазы, инактивирующей в организме морфин. Тем самым ингибитор пролонгирует действие наркотика.
216
Цит. по: Парк Д. Биохимия чужеродных соединений / Пер, с англ, под ред. Л. Ф. Панченко, М.; Медицина, 1973.
Таким образом, химические соединения — стимуляторы и блокаторы процессов биотрансформации ядовитых веществ с достаточным основанием могут быть причислены к противоядиям и как справедливо отметил профессор В. И. Розенгарт, [217] дальнейшее изучение этих соединений при все возрастающем интересе к ним как биохимиков, так и токсикологов будет способствовать разработке новых действенных специфических средств борьбы с отравлениями.
В последние годы появилось немало доказательств усиления реакций превращения многих чужеродных соединений посредством
217
Розенгарт В. И. Метаболизм фосфорорганических соединений в организме животных. — В кн.: Химия и применения фосфор-органических соединений. М.: Наука, 1972, с 10–16.
218
Цит. по: Бабоян Д. Путевка в ад / Сокр. пер. с рум. М.: Междунар. отношения, 1973.
Нечто подобное можно видеть при повторяющемся приеме одной и той же дозы некоторых лекарств. Это, например, наблюдается при применении больными бутадиена (фенилбутазона) — болеутоляющего и жаропонижающего препарата, когда обычная его суточная доза дает прогрессивно уменьшающийся эффект. Сходное явление было продемонстрировано в опытах на мышах и крысах, у которых при регулярном введении фиксированных доз барбитуратов сон становился все менее продолжительным. Индукция синтеза ферментов, вызывающих биотрансформацию этих и ряда других лекарственных веществ при их повторном введении, доказана экспериментально. При этом возвращение содержания микросомальных ферментов к исходному уровню наблюдалось не ранее чем через 10 недель после лекарственного воздействия. Здесь уместно отметить, что названные лечебные препараты могут стимулировать функцию ферментов, инактивирующих другие лекарственные вещества, в частности дикума-риновые антикоагулянты. Вот почему последние могут не оказать лечебного действия, если больные одновременно получают барбитураты или бутадион. [219] С другой стороны, в последнее время была показана возможность развития так называемой энзиматической адаптации, когда продолжительное влияние на организм некоторых ядов ведет к усилению их токсичности из-за активирования ферментов, разрушающих глюкуроновую кислоту и другие вещества, необходимые для образования безвредных конъюгатов. Подобное явление может наблюдаться также тогда, когда многократное токсическое воздействие стабилизирует ферменты, трансформирующие яды в опасные для организма продукты. Например, при повторяющемся введении животным малых доз метилового спирта резко усиливается его действие вследствие, по-видимому, активирования алкогольдегидрогеназы и ускорения превращения яда в высокотоксичные метаболиты. Таким образом, сами ядовитые вещества в определенных условиях могут оказаться специфическими средствами направленного воздействия на токсический процесс.
219
Цит. по: Альберт Э. Избирательная токсичность / Пер. с англ. М.: Мир, 1971.
Заключение
Все изложенное в данной книге говорит об определенных успехах науки в раскрытии молекулярных механизмов действия многих ядовитых веществ и выяснении сущности процессов их превращения в организме. Это в свою очередь обусловило реальные возможности создания эффективных противоядий, которые или уже стали практически используемыми препаратами, или еще находятся в стадии экспериментальной разработки. При описании действия противоядий мы не разграничивали их по такому признаку и не акцентировали внимание на лечебной стороне вопроса, поскольку стремились ознакомить читателя прежде всего с важнейшими механизмами антидотного эффекта в том виде, в каком они представляются в настоящее время. И здесь необходимо особо подчеркнуть, что успешное специфическое воздействие на токсический процесс с помощью антидотов является хотя и весьма надежным, но лишь одним из нескольких реально значимых принципов борьбы с отравлениями. Это тем более важно иметь в виду, что в настоящее время еще не существует противоядий при интоксикациях многими распространенными ядами: дихлорэтаном, бензолом и рядом его производных, высокотоксичными веществами растительного и животного происхождения и др. Современную практическую токсикологию невозможно представить без многих других неотложных мероприятий (назовем их неспецифическими) по предупреждению и лечению интоксикаций. Не касаясь конкретных показаний к проведению этих мероприятий, перечислим важнейшие из них.
1. Экстренное прекращение дальнейшего поступления (всасывания) яда во внутренние среды организма (промывание желудка, вызывание рвоты, удаление яда из кишечника, а также его нейтрализация при попадании в глаза, на кожу и слизистые оболочки).
2. Ускоренное выведение из организма уже всосавшегося яда и его токсичных метаболитов для максимального уменьшения их количества в крови и тканях. С этой целью при тяжело протекающих острых отравлениях применяются:
а) форсированный диурез, т. е. резкое усиление выделительной функции почек как естественного способа очищения организма от токсичных веществ, что достигается введением отравленному больших количеств жидкости и растворов осмотически активных веществ, а также диуретических средств; при ряде тяжелых отравлений форсированный диурез проводится
совместно с алкалинизацией (ощелачиванием) плазмы и мочи, что препятствует задержке ядов в тканях, повышает растворимость и тормозит их обратное всасывание в почках;б) увеличение продукции желчи клетками печени и усиление работы органов дыхания с помощью соответствующих лекарственных средств;
в) гемодиализ (избирательный обмен различных веществ между плазмой крови и специальным раствором электролитов через поры полупроницаемой мембраны), перитонеальный диализ (введение в брюшную полость гипертонического раствора электролитов, в который ядовитые вещества переходят из крови через брюшину, выполняющую функцию диализирующей мембраны);
г) гемосорбция и ее разновидности — плазмо и лимфосорбция (очищение крови от чужеродных и балластных эндогенных веществ посредством подключения кровеносного русла к специальному аппарату с сорбирующими веществами, что одновременно обеспечивает поддержание детоксикационной функции печени); по быстроте и эффективности гемосорбция теперь ставится на первое место из всех способов выведения токсичных веществ из организма.
3. Восстановление и обеспечение нормального функционирования жизненно важных систем и органов: кровообращения, дыхания, центральной нервной системы, печени, почек, а также гуморальной среды организма (электролитный баланс, кислотно-щелочное равновесие, водный обмен).
4. Введение кислорода в организм отравленного как метод патогенетического лечения гипоксических состояний, практически возникающих при всех острых интоксикациях. Необходимым условием успешного кислородного лечения является устранение (или по крайней мере уменьшение) токсических нарушений транспорта кислорода в организме.
Опыт показывает, что экспериментальные и клинические данные о разнообразных типах специфического воздействия на токсический процесс могут считаться достоверными лишь тогда, когда позволяют на молекулярном уровне оценить характер взаимодействия ядов, — реактивных структур организма и антидотов. Иными словами, особую токсикологическую значимость приобретает анализ сущности химических (биохимических) и физико-химических процессов, протекающих при таком взаимодействии. Сейчас есть достаточно оснований полагать (и в этом мог убедиться читатель), что наибольшую практическую ценность и перспективность имеют те антидоты, которые в «точках приложения» ядов действуют выборочно на определенные биологические структуры и позволяют тем самым вмешиваться в интимные механизмы жизнедеятельности, в частности в функцию передатчиков нервного возбуждения и рецепторных образований организма. Несомненно также большое значение противоядий, активно влияющих на течение различных обменных процессов.
В числе всех этих так называемых функциональных противоядий мы рассмотрели вещества, препятствующие действию яда на рецепторные структуры или блокирующие это действие (атропиноподобные соединения, адреноблокаторы, обратимые ингибиторы ферментов); реактивирующие биоструктуры с последующей окончательной или временной детоксикацией яда (оксимы, унитиол, цистамин); конкурирующие с ядом за связь с рецепторами (кислород, структурные аналоги токсичных лекарств); замещающие биоструктуры, поврежденные или утраченные под воздействием яда (пиридоксин, цитохром С, хлорид кальция); активаторы и ингибиторы ферментов, метаболизирующих яды (препарат SKF-525A, антиоксиданты), и ряд других. Некоторые из них являются анти-дотами многостороннего действия и, значит, могут использоваться при различных отравлениях или яда воздействовать на один и тот же токсический процесс разными путями. Например, глюкоза и метиленовый синий — антицианиды и в то же время восстановители метгемоглобина. Кроме того, глюкоза может быть заместительным антидотом при инсулиновой интоксикации, а метиленовый сивый влиять на процессы тканевого окисления, нарушенные ядами. Здесь уместно отметить, что в последнее время все большее значение в качестве противоядий многостороннего действия приобретают антиоксиданты. В частности, такие вещества, как токоферол, селенит натрия, цистамин и другие содержащие серу аминокислоты, снижают токсичность отдельных ФОС, воздействуя, по-видимому, на соответствующие ферменты, подобно препарату SKF-525A. Кроме того, они тормозят окислительные превращения некоторых токсичных химических соединений в вещества, избирательно влияющие на биоструктуры. Например, антиоксиданты препятствуют окислению анилина в метгемоглобинообразующий метаболит. Однако наличие разнообразных антидотов непрямого типа действия не снижает практической роли препаратов, обезвреживающих яды в организме химическим (физико-химическим) путем. Именно эти противоядия по традиции принято использовать в первую очередь прежде всего из-за доступности способов применения и достаточно уверенного прогнозирования их действия.
Подводя итог рассмотрению антидотных средств, приходится констатировать некоторое отставание практики лечения отравлений от достижений экспериментальной токсикологии. На это, например, обратил внимание академик АМН СССР С. Н. Голиков, [220] который, в частности, указал на неиспользуемые реальные возможности применения многих новых холинолитиков и их комбинаций, значительно превосходящих по своей активности атропин и в то же время лучше переносимых человеком. К сожалению, даже в некоторых токсикологических практических руководствах и учебных пособиях подчас не описываются отдельные известные и хорошо зарекомендовавшие себя на практике антидоты (например, актарсин как антидот мышьяковистого водорода, а также цистамин и метиленовый синий как активные средства восстановления метгемоглобина).
220
Голиков С. Н. Профилактика и терапия отравлений фосфорорганическими инсектицидами. М.: Медицина, 1933.
Не вызывает сомнения, что точная диагностика и наличие быстро и надежно действующего антидота являются необходимыми условиями эффективной борьбы с отравлениями. Но специфическое вмешательство в течение отравления дает желаемый результат тогда, когда антидот вводится в нужном количестве и в наиболее подходящие сроки. В этой связи интересно рассмотреть в динамике воздействие яда и антидота на организм. Можно представить острый токсический процесс графически в виде кривой, которая отображает направление сдвига физиологической функции (например, кровообращения, дыхания, нервно-мышечного аппарата) от нормального ее уровня до максимального проявления с последующим спадом (рис. 20). Если антидот введен в начальном периоде развития отравления, то, будучи антагонистом яда, он способствует замедлению или остановке токсического процесса. Здесь имеет значение доза антидота: когда она недостаточна, то действие яда продолжается, а когда слишком велика то может снизить уровень физиологических функций ниже нормального. На высоте развития интоксикации лечебный эффект может быть достигнут с помощью большей дозы антидота, который действует медленнее. При этом вероятность возврата к исходному уровню уже уменьшается. Если же противоядие начинают применять на последней стадии отравления, когда уже сказывается истощение энергетических ресурсов эффекторных органов и их избыточная функция проявляется в меньшей степени, то взаимоотношения яда и антидота принципиально меняются: из антагонистов они превращаются в синергистов. Здесь еще большее значение приобретает выбор дозы антидота, так как при его передозировке может быть ускорено наступление рокового исхода. Конечно, на этой стадии эффективность антидотного лечения резко снижается. Такое представление о динамической взаимосвязи яда и антидота оказывается справедливым в отношении многих остро протекающих интоксикаций. Из него следует что одной из труднейших задач которую призвана решить токсикология, — является разработка в каждом конкретном случае временных и количественных рекомендаций по использованию антидотов.