Зеркальный мир
Шрифт:
Особенно важное значение имеет рациональное использование площади в теплообменниках. Теплообменник состоит из труб (в которых проходит жидкость), вваренных в общее днище. Эти трубы омываются жидкостью иной температуры. При этом температуры жидкостей вне и внутри труб выравниваются. Так как размеры всякого агрегата всегда стремятся сократить, то и трубы в теплообменниках стараются укладывать наиплотнейшим образом.
Французский мыслитель и ученый Блез Паскаль (1623-1662) посвятил шаровым упаковкам целый трактат. Он задался целью с помощью фигур (составленных из шаров) придать числам зримую наглядность. Представьте, что наш продавец фруктов вслед за Паскалем сооружает пирамиду, скажем из апельсинов. У Паскаля такая пирамида из шаров делала «зримой» третью степень. Во фруктовом магазине апельсиновая гора предназначена, естественно, не для того, чтобы напоминать нам о математике. Но если вам случилось немного задержаться в очереди у прилавка, посмотрите, как это делается. Сначала продавец выкладывает квадрат. Затем, глядя на свое произведение, он задумывается. Вы, не удержавшись, спрашиваете, над чем он ломает голову. И узнаёте, что всего лишь
– С четырьмя апельсинами не выходит, с шестнадцатью тоже, и с двадцатью пятью ничего не получается». Удивившись, вы складываете квадрат 5Х5. Потом пробуете: 3Х3=9 - в качестве основания, 4 - во втором ряду, 1 апельсин как завершение - итого лишь 14 апельсинов вместо 25, заготовленных для пирамиды. Потом вы кладете 4Х4=16 в основание, 9 во второй ряд. Это уже 25, а пирамида еще не готова. Вами обоими овладевает азарт. Продажа апельсинов прекращается. Покупателям объявляют, что они должны «принести жертву» на алтарь науки. Вы систематически перебираете все числа-квадраты - 9, 16, 25, 36, 49 и т. д., пытаясь преобразовать их в пирамиду.
При укладке в три слоя верхний слой шаров следует укладывать в гнезда между шарами среднего слоя. Если предварительно не условиться о том в какие именно ямки укладывать шары, укладка с двух сторон (навстречу друг другу) не совпадет
Наконец, либо на вас, либо на продавца нисходит то самое знаменитое «озарение»- одного из вас внезапно осеняет блестящая мысль пойти путем проб и ошибок. Вы теперь решаете задачу обратным путем, исходя не из подбора нужных размеров квадрата, а из наличия шаров - строите пирамиду сверху вниз (1, 4, 9 и т. д.) так долго, пока сумма всех использованных шаров не окажется квадратом какого-нибудь числа. Если у вас окажется под рукой карманный калькулятор, это не составит проблемы. Он быстро пересчитает вам по порядку все числа-квадраты в последовательных слоях: верхний слой 1, второй слой 4, третий слой 9 апельсинов и т. д.
– и сложит результаты, то есть 1+4+9 и т. д. После каждого сложения он проверит, представляет ли собой полученное число квадрат. На 24-м слое окажется, что из 4900 апельсинов можно выложить квадрат 70Х70. Тем самым задача решена, и продавец может снять с двери табличку «Закрыто на приемку товара». Квадратное основание такой пирамиды составят 24Х24=576 апельсинов. «Давайте все же сложим маленькую пирамиду из апельсинов для витрины», - предлагает продавец. Вы с готовностью соглашаетесь и, усердно складывая апельсины, попутно объясняете продавцу, что не только в торговле возникают подобные проблемы, но, например, так же построены все кристаллы. Вам не удается закончить свои рассуждения, так как на третьем слое апельсинов, который вы с продавцом укладывали с двух сторон, узоры обеих укладок не сошлись. Решив обсудить эту проблему с продавцом, вы вконец расстроили бы торговлю. Но, может быть, вы уже поняли, в чем причина ошибки?
ПУТЬ К НОБЕЛЕВСКОЙ ПРЕМИИ
В одной из своих книг американский ученый Джеймс Д. Уотсон не без юмора и изрядной доли сарказма рассказывает о том, как он совместно с англичанами Френсисом Г. Криком и Морисом X. Ф. Уилкинсом открыл структуру генной спирали (носителя наследственности) (Уотсон Дж. Д. Двойная спираль.
– М.: Мир, 1969). Эти трое ученых получили в 1962 г. за свое открытие Нобелевскую премию. Если верить Уотсону, то большую часть времени он проводил в поисках развлечений и лишь иногда для собственного удовольствия размышлял о том, как построить модель гена из маленьких шариков. Задача состояла в том, чтобы, зная примерное число и последовательность расположения атомов в молекуле ДНК, построить ее модель из шариков и стержней. Размеры шариков в модели соответствовали размерам атомов в молекуле ДНК. Например, радиус иона углерода составляет 0,016 нанометра (нм) (нанометр - миллионная доля миллиметра), а радиус иона калия 0,133 нм. Из курса химии вы, наверное, помните, что ионы - это «осколки» атомов, несущие электрический заряд. При изготовлении модели были использованы шарики диаметром около 3 см, что соответствовало увеличению в миллиард раз. Уотсон, Крик и Уилкинс должны были учитывать также химическую валентность элементов (углерод четырехвалентен, калий одновалентен) и их химическое сродство - склонность определенных элементов вступать в соединение друг с другом. Их работа, ставшая ныне классической, - яркий пример того, как, играя в шарики, можно получить Нобелевскую премию.
Здесь шары второго слоя единообразно лежат в соответственных пустых гнездах между шарами. Внимательный взгляд замечает', что каждый шар окружен шестью другими шарами (гексагональная упаковка)
Вы еще помните вопрос, заданный в конце предшествующего раздела: почему мотивы обоих рисунков в третьем слое не совпали? Очевидно, шары третьего слоя можно укладывать в промежутки между шарами второго слоя разными способами. Во втором слое имеются пустые гнезда, расположенные непосредственно над шарами первого слоя; обозначим их буквой А. Но есть и такие гнезда, под которыми шары отсутствуют; обозначим их буквой В. Через них сквозь оба слоя просматривается подложка.
Таким образом, при укладке шаров третьего слоя мы можем выбирать между гнездами А и В. Если положить шары в гнезда А, то есть над шарами первого слоя, и продолжать следовать этой схеме при укладке дальнейших слоев, то получится гексагональная (шестиугольная)
структура. Но стоит нам предпочесть пустоты типа В, как возникает кубический мотив укладки.Рассполагая достаточным запасом шаров, можно выкладывать попеременно один слой по схеме А, другой по схеме В. Только в пределах одного слоя нужно быть последовательным, выдерживая единую схему (любую из них), иначе рисунки укладки не совпадут между собой (В плотнейшей шаровой гексагональной упаковке слои чередуются по схеме: АВ-АВ-АВ. Соответствующая схема для плотнейшей кубической упаковки: ABC-ABC-ABC. Менее симметричные плотнейшие шаровые упаковки имеют схемы ABAC-ABAC-ABAC, АВСАСВ-АВСАСВ-АВСАСВ и т. д.
– Прим. ред).
Гексагональная ячейка обладает плотнейшей шаровой упаковкой. Атомы располагаются в пустых гнездах между шарами. Для большей наглядности шары изображены мельче их действительного размера и потому не соприкасаются между собой
Конечно, и в этом случае возникает вопрос об использовании объема. Как мы помним, использование площади при укладке «в гнезда» составило 90,6%. При некотором воображении мы можем представить себе мысленно вырезанный из нашей шаровой упаковки элементарный куб. Он будет включать 8 угловых шаров и 6 шаров, расположенных в центрах каждой из граней куба. Такая структура носит в кристаллографии название «кубическая гранецентрированная структура».
Однако, сказав только что, будто в углах куба находятся 8 шаров, мы были не вполне правы. Ведь эти шары вместе с тем принадлежат и другим кубам, смежным с нашим. В каждом угл стыкуются между собой 8 совершенно одинаковых элементарнь/ кубов. Поэтому каждый угловой шар лишь на У8 относится выбранному нами кубу. Несколько лучше обстоит дело с шестью шарами, расположенными на гранях: ведь по каждой грани соприкасаются лишь 2 элементарных куба. Соответственно любой такой шар принадлежит каждому из смежных кубов наполовину. Следовательно, общее число шаров в кубе составляет 8 • 1/8+6 • 1/2 = 4. Отсюда рассчитывается степень заполнения объема в 74%, то есть она ниже, чем степень заполнения площади.
Существует ли лучший способ, использования объема? Нет Такой способ не известен: кубическая гранецентрированная и гексагональная решетки представляют собой наиплотнейшие из всех возможных упаковок шаров. Из 72 известных нам металлов 55 кристаллизуются на основе плотнейшей шаровой упаковки Что касается остальных, то кристаллическая структура 10 из них все же гарантирует высокое (хотя и не самое высокое) заполнение объема. И лишь 7 металлов (среди которых нет ни одного важного) имеют структуру, обнаруживающую плохое использование объема. Металлическое состояние прямо-таки требует высокой плотности упаковки атомов.
Кубическая пространственная решетка является либо кубической гранецентрированной с плотнейшей упаковкой в 74% (вверху), либо кубической объемно-центрированной с плотностью упаковки 68% (внизу)
Приглядевшись к шаровым упаковкам, изображенным на рисунках, вы заметите, что в некоторых направлениях плоские слои шаров сравнительно легко поддаются смещению. Вот откуда у металлов хорошо выраженная склонность к деформации. Здесь важную роль играет также высокая симметрия плотнейших упаковок: именно благодаря ей становится возможной деформация большинства металлов во многих направлениях. Последнее обстоятельство отнюдь не является самоочевидным. Существуют вещества с кристаллическими решетками, допускающими деформацию лишь в одном направлении или обнаруживающими предпочтительное направление, по которому они легко колются, как в случае алмаза.
Мы теперь принимаем как само собой разумеющееся, что металлы и другие вещества имеют кристаллическое строение и что в отдельных точках (узлах) их кристаллической решетки располагаются атомы. Не сомневаемся мы и в том, что атомы могут быть с соблюдением масштаба представлены шариками для пинг-понга, апельсинами или иными круглыми предметами. Однако наши предки даже представить не могли себе, что плотная материя настолько рыхла. Потребовалось немалое воображение и многие десятилетия, чтобы поверить, что неисчислимое многообразие окружающего нас мира «построено» из менее чем сотни основных «кирпичиков» - химических элементов. И если ,все это действительно так, то почему атомы должны быть обязательно шарообразными? Казалось бы, куда «разумнее» представлять их себе в виде кубиков. Ведь, составленные вместе, такие кубики как раз и образовали бы ту плотную, непроницаемую материю, с которой мы сталкиваемся в нашей повседневной жизни. Ну что сказать на это? Конечно, атомы не шары. Но в большинстве случаев они ведут себя таким образом, что их удобно представлять именно в форме шариков. Иногда их удобнее описывать или изображать как крохотные планетные системы, где вокруг положительно заряженного ядра вращаются отрицательно заряженные электроны. Физики с успехом описывают атомы как волны. Для каждого из этих подходов существуют свои достаточно веские основания. Главным из них всегда служит предоставляемая той или иной моделью практическая змоэкность понять различные состояния атома или материи.
Если на это последует возражение, что, мол, должно все-таки существовать действительно правильное (то есть единственно верное) описание атома, то можно задать встречный вопрос: а почему, собственно, так должно быть? Здесь остается еще широкое поле деятельности для теоретиков и философов. В практичности же нашей «шариковой» модели убеждают связанные с нею большие успехи в области науки и техники.
Не только Уотсон и его коллеги получили Нобелевскую премию за работы с шариками-атомами. Еще в 1914 г. физик Макс фон Лауэ (1879-1960) был удостоен этого высокого международного отличия за доказательство того, что вещество «состоит из шариков с дырками между ними».