Чтение онлайн

ЖАНРЫ

...И мир загадочный за занавесом цифр. Цифровая связь
Шрифт:

Из описания голосового аппарата человека нетрудно понять, что голосовые связки играют роль своеобразных струн, только они создают более обильное количество обертонов. При преобладании в человеческом голосе высоких обертонов над низкими мы слышим "звучание металла". Люди, у которых в голосе преобладают низкие обертоны, говорят мягким, бархатным голосом. Частоты основных тонов и обертонов при произнесении различных звуков разными людьми лежат в пределах 80-6 000 Гц. Это значит, что при замене непрерывной кривой звукового давления человеческой речи его отсчетные значения необходимо брать с частотой не ниже 12000 Гц (поскольку последний обертон имеет частоту 6000 Гц), или, другими словами, не реже чем через 1/12000 = 0,0000833

с = 83,3 мкс.

Итак, мы выяснили, что вся богатейшая информация, содержащаяся в звуках музыки, человеческой речи, в шумах и т. п., заключена, по сути дела, в форме кривой давления звуковой волны на пластину, поставленную на ее пути.

Может показаться, что проблема кодирования речи двоичной последовательностью 0 и 1 принципиально нами уже решена: измеряй каждые 83,3 мкс или чаще звуковое давление и полученные десятичные числа переводи в двоичный код! Теоретически все верно. Но как это реализовать практически? Мы только тогда сможем передать звуки или "законсервировать" их в электронной памяти, когда превратим двоичные цифры в импульсы электрического тока. Как выполнить такое превращение? И как из двоичного кода снова "извлечь" звук?

Нередко решение сложных инженерных задач подсказывала живая природа — самая удивительная в мире биологическая лаборатория. Например, во время первой мировой войны на кораблях английского флота устанавливали гидрофоны — приборы для прослушивания шума гребных винтов немецких подводных лодок. Чтобы движение воды у приемного отверстия не создавало мешающий шум, ему придавали форму ушной раковины тюленя, который хорошо слышит при движении в воде.

Вот уже два столетия ученые пытаются раскрыть тайны восприятия звука слуховыми органами человека. До сих пор еще не ясно, каким образом наше ухо может улавливать звуки, различающиеся по силе давления в 1013раз. Если бы существовали весы с таким же диапазоном измерений, то на них удалось бы взвешивать и горошину, и железнодорожный состав. Остается пока загадкой для ученых и то, каким образом человеческое ухо способно разбираться в совокупности тонов и обертонов, отличать один тембр звука от другого.

 В 1842 г. Берлинский медико-хирургический институт выпускал очередную группу подготовленных в его стенах врачей. Среди них выделялся блистательный молодой человек, уже на 21-м году жизни зарекомендовавший себя зрелым ученым, сделав свое первое открытие — нейрон. Это был Герман Гельмгольц (1821–1894). Свою карьеру он решил начать с военной службы врачом-хирургом в гусарском эскадроне. Но вскоре Герман понял, что его призвание — наука, и решил расстаться с гусарской службой. Слава Гельмгольца-ученого росла удивительно быстро.

Блестящие открытия в физике, физиологии, анатомии, математике, психологии позволили ему при жизни стать "великим", признать его одним из величайших ученых XIX в. Будучи профессором университетов в Кенигсберге, Бонне, Берлине, обладая широким кругозором, разнообразием знаний, Г. Гельмгольц сделал очень много и для изучения слухового аппарата человека.

Давайте и мы с вами рассмотрим этот сложнейший, созданный природой приемник звуковых сигналов.

Звуковая волна, пройдя через ушную раковину — наружное ухо, наталкивается на туго натянутую, перекрывающую слуховой проход барабанную перепонку (мембрану) и оказывает на нее давление. (Вспомните пластину, поставленную на пути звуковой волны!) Барабанная перепонка под давлением звука начинает колебаться. Чем сильнее звук — тем сильнее колеблется перепонка.

С другой стороны перепонки расположено среднее ухо. Здесь находятся три маленькие косточки — молоточек, наковальня и стремечко, которые как рычажный механизм передают колебания другой барабанной перепонке, отделяющей среднее ухо от внутреннего. Эти две барабанные перепонки еще не являются органами слуха: с их помощью звуковое давление преобразуется в механические колебания, которые передаются во внутреннее ухо.

Если вы видели когда-нибудь улитку, то можете легко представить строение внутреннего уха. Это костная полость, свернутая улиткой и наполненная жидкостью. Внутри костного "домика" улитки и спрятан орган слуха, или кортиев орган, названный так по имени итальянского анатома А. Корти, впервые обнаружившего его. Основой кортиева органа является очень тонкая перепонка — мембрана (опять мембрана!), соприкасающаяся с 25–30 тысячами слуховых нервных волокон. Звуковое давление от средней барабанной перепонки через жидкость в улитке передается мембране кортиевого органа. Она начинает колебаться и раздражать слуховые нервные волокна. Вот здесь-то и происходит преобразование механических колебаний мембраны в серию нервных импульсов, которые по нервным волокнам "бегут" в мозг.

— Все

ясно, — воскликнет читатель, знакомый с научно-популярной литературой, — авторы подвели нас к мысли, что звуковое давление нужно преобразовать сначала с помощью тонкой пластины (мембраны) в механические колебания, а затем в импульсы, но не нервные, а электрические, как это сделал изобретатель телефона А.Г. Белл!

Верно, читатель. Рассказ о том, как Белл (1847–1922) подарил миру телефон, можно встретить во многих изданиях. Символично, что в переводе с английского слово "bell" означает колокол, звонок.

 Белл был учителем в школе глухонемых в американском городе Бостоне. Чтобы помочь людям, лишенным слуха и речи, он пытался создать слуховой аппарат, которым могли бы пользоваться его ученики. Рассказывают, что как-то раз 26-летний Александер Белл познакомился с английским физиком Ч. Уитстоном, который находился уже в весьма преклонном возрасте, и тот заинтересовал его идеей передачи звука с помощью электрического тока. Белл со всей энергией принялся за дело. Прежде всего он решил узнать, как человеческое ухо воспринимает звуки. Белл присутствовал на операциях у знакомого врача, изучал строение уха. Возможно, именно тогда у него и родилась мысль построить "электрическую гортань", издающую звуки, и "электрическое ухо", способное их воспринимать.

"Электрическое ухо" Белла состояло из картонного рупора, выполнявшего роль ушной раковины, ко дну которого была прикреплена круглая пластинка из тонкой жести — мембрана, наподобие барабанной перепонки в ухе. Точно такой же вид имела и "электрическая гортань".

Если в рупор "уха" произносили слова, его мембрана колебалась в такт звуковому давлению. Чтобы преобразовать механические колебания в колебания электрического тока, мембрана жестко соединялась с металлическим сердечником, расположенным внутри катушки. Через катушку пропускался постоянный ток от батареи. Когда мембрана колебалась, сердечник тоже колебался и тем самым изменял магнитное поле катушки. Белл был, безусловно, знаком с явлением электромагнитной индукции, открытым в 1831 г. английским физиком М. Фарадеем, и знал, что любое изменение магнитного поля катушки вызывает такое же изменение тока, протекающего в ней. Именно поэтому колебания электрического тока повторяли колебания мембраны. Таким образом, от "уха" по проводам бежал ток, являющийся электрической копией звукового давления.

В "электрической гортани" была точно такая же катушка. Но в ней протекал процесс прямо противоположный: колебания электрического тока изменяли магнитное поле катушки. Ее сердечник начинал колебаться и толкать в такт мембрану "гортани". В свою очередь, мембрана колебала воздух, а рупор усиливал эти колебания и направлял звуковую волну в настоящее человеческое ухо.

А.Г. Белл изобрел телефон в 1876 г. С тех пор в его конструкцию было внесено много усовершенствований. В частности, в современном телефоне вместо "электрического уха" Белла используется чувствительный угольный микрофон. В нем мембрана соприкасается с угольным порошком. Пока в микрофон не говорят, сопротивление порошка остается неизменным и через него от батареи в линию (провода) протекает постоянный ток. Стоит произнести в микрофон какие-нибудь слова, порошок под действием колеблющейся мембраны будет то спрессовываться, то разрыхляться. Изменение плотности порошка приведет к изменению его электрического сопротивления, а значит, и к изменению тока, текущего через порошок. И снова в проводах, идущих от микрофона, рождается электрическая копия звукового давления.

Принцип действия "электрической гортани" Белла сохранился и поныне. Правда, в современном телефонном аппарате она стала более компактной и умещается в телефонной трубке, однако сейчас встречаются и такие громкоговорители, которые гораздо крупнее своего "прадедушки".

С изобретением Белла, казалось бы, устранились все трудности перевода звукового давления в двоичный цифровой код.

Действительно, чего проще: замыкай и размыкай с помощью ключа цепь тока на выходе микрофона и получай отсчетные значения электрической копии звукового давления. Однако потребовалось еще более 50 лет, чтобы со всей математической строгостью доказать возможность замены любой непрерывной функции ее отсчетными значениями и выяснить, как часто такие значения следует брать. Сделал это в начале 30-х годов XX столетия академик В.А. Котельников. С тех пор все специалисты по передаче информации знают теорему об отсчетах непрерывной функции, носящую его имя.

Поделиться с друзьями: