...И мир загадочный за занавесом цифр. Цифровая связь
Шрифт:
На станции имеется устройство наведения антенны на спутник. Если он находится на геостационарной орбите, такое наведение делается только один раз. Если же спутник движется по эллиптической орбите, то необходимо еще и следить за его положением. Такое наведение и слежение осуществляются с помощью компьютеров.
Земные станции строят, как правило, за несколько десятков километров от города и соединяют их кабельной или радиорелейной линией с телецентрами, междугородными телефонными станциями, телеграфами, вычислительными центрами.
Необходимо иметь в виду, что "космический радиомост" вообще может быть только частью длинной магистрали, в которую на равных правах входят и кабели, и радиорелейные линии. Словом, биты, которые вы с нетерпением
Мирная профессия гиперболоида
То заря ли? Или это
от него исходит свет? М. де Унамуно
"Первый удар луча пришелся по заводской трубе, — она заколебалась, надломилась посредине и упала… Почти сейчас же влево от трубы поднялся столб пара над крышей длинного здания, порозовел, перемешался с черным дымом. Еще левее стоял пятиэтажный корпус. Внезапно все его окна погасли. Сверху вниз, по всему фасаду, побежал огненный зигзаг. Еще и еще… Здание осело, рухнуло, его костяк закутался облаками дыма…
Теперь был виден весь завод, раскинувшийся на много километров. Половина зданий его пылала, как картонные домики. Внизу, у самого города, грибом поднимался серо-желтый дым. Луч гиперболоида бешено плясал среди этого разрушения, нащупывая самое главное — склады взрывчатых полуфабрикатов. Зарево разливалось на полнеба. Тучи дыма, желтые, бурые, серебристо-белые снопы искр взвивались выше гор…"
Вспомнили? Так в романе А.Н. Толстого "Гиперболоид инженера Гарина" описана чудовищная разрушительная сила светового луча. Возомнивший себя сверхчеловеком и мечтающий поставить на колени весь мир авантюрист Петр Гарин изобрел прибор — гиперболоид, концентрирующий свет в виде чрезвычайно тонкого, нерасходящегося луча невероятной мощности.
Стало чуть ли не традицией начинать рассказ об оптических квантовых генераторах — лазерах — с эпизодов из этого фантастического романа. Не удалось избежать этого соблазна и нам.
Тому есть веское объяснение. Роман А.Н. Толстого — предупреждение человечеству. Писатель показал, какими бедами могут обернуться новые открытия, если попадут в руки агрессивных сил. И хотя в наши дни также существует угроза применения лазерного оружия (например, в космосе), вот уже почти три десятилетия лучи лазера несут мирную службу людям. С его помощью делают тончайшие хирургические операции, ведут сварку металлов, измеряют расстояния, создают интегральные микросхемы, управляют химическими процессами, исследуют строение атома.
Расскажем еще об одной уникальной способности лазера. История того, как его "научили" передавать цифровую информацию.
Световой поток… Над его тайнами размышляли многие поколения ученых. Еще в III в. до н. э. замечательный математик и механик древней Греции Архимед пытался сконцентрировать поток солнечного света в тонкий луч. До наших дней дошла легенда о том, как во время осады Сиракуз римлянами он сжег неприятельский флот при помощи зажигательных зеркал. Английский физик, механик, астроном и математик Исаак Ньютон (1643–1727) обнаружил, что белый свет не так прост, как кажется. Он сложен и с помощью призмы разлагается на простые цвета. Голландский механик, физик и математик Христиан Гюйгенс (1629–1695) высказал предположение о волновом характере света, а английский физик Джеймс К. Максвелл (1831–1879) доказал, что световая волна — это электромагнитное колебание. В 1900 г. немецкий физик Макс Планк (1858–1947) выдвинул теорию, по которой свет излучается порциями — квантами. Это противоречило всем сложившимся представлениям о
волновой природе электромагнитного излучения.Так что же такое свет? Кванты или электромагнитные волны?
И то, и другое — таково мнение современной науки. Свет состоит из мельчайших частиц — фотонов. Впервые если не отдельные фотоны, то, во всяком случае, малые их группы (до 5–7 фотонов) удалось увидеть 1933 г. замечательному советскому физику академику С.И. Вавилову (1891–1951). Оказалось, что фотоны света обладают массами, правда, по нашим понятиям, более чем скромными. Так, масса "красного" фотона всего 3,16•10– 33 г, а фотон фиолетового цвета чуть увесистее — 5,15•10– 33 г. Как говорится, рукой не ощутишь.
Обладая свойствами частицы, свет в то же время является и волной, простирающейся в бесконечность. Для объяснения связи между электричеством, радиоволнами, светом и квантовой механикой предлагается, призвав на помощь воображение, проделать такой опыт: зажать в тиски пластмассовую линейку, потереть ее выступающий конец кошачьей шкуркой (чтобы вызвать электростатический заряд) и затем придавать ей колебательные движения, меняя частоту, т. е. число колебаний в секунду. Так как всякое колебательное движение электрического заряда порождает электромагнитные волны той же частоты, что и движение, то наша линейка станет излучателем электромагнитных волн.
Начнем с частоты колебаний 50 Гц. С такой частотой подается переменный ток в наши квартиры. Именно им питаются бытовые электроприборы. Пропуская частоты в сотни и тысячи герц, с которыми переменные токи переносят цифровую речь в городских и междугородных кабелях связи, поднимаемся сразу в диапазон частот до миллионов герц (мегагерц). Здесь мы попадаем в мир радиоволн. На них ведут передачи радиовещательные станции. При 100 МГц мы попадаем в область цифрового кабельного телевидения, а при 10000 МГц (10 ГГц) — в область радиолокации. В диапазоне 430–700 ГГц нас встречают цвета радуги: мы попадаем в область видимых электромагнитных волн, проще говоря — света. Увеличивая частоты колебаний, мы оказываемся в области рентгеновских и гамма-лучей. Это диапазоны частот 1018 и 1023—1024 Гц. Показатель степени — число нулей, которые надо поставить после единицы, чтобы получить частоту в герцах. За ними следуют самые высокочастотные из известных нам волн — космические лучи. Они приходят к нам из таинственных глубин Вселенной.
Как видите, и электричество, и радиоволны, и свет, и рентгеновское излучение, и гамма-частицы — все они одной природы. Только разные частоты отличают их и придают им "индивидуальность".
В СВЧ-генераторах радиорелейных и спутниковых линий передачи длины используемых электромагнитных волн составляют caнтиметры. В оптических же генераторах длины электромагнитных волн сократились с сантиметров до десятитысячных долей миллиметра. Частотам видимого света (4,3•1014– 7•1014 Гц) соответствуют длины волн 0,7–0,43 мкм (1 микрометр — это одна миллионная доля метра).
Так зачем же нам нужно, чтобы "радиосигнал" засветился всеми цветами радуги? Почему потребовались электромагнитные волны все большей частоты? Ответы на эти вопросы довольно просты. Во-первых, чем выше частота электромагнитных колебаний, тем шире может быть рабочая полоса частот. Это, в свою очередь, позволяет передавать цифровую информацию с большей скоростью (по аналогии с автострадой: чем она шире, тем легче по ней гнать). Для иллюстрации этого факта напомним, что для передачи цифровой речи (скорость 64000 бит/с) необходимо, чтобы в рабочей полосе частот "укладывались" гармоники с частотами 32, 96, 160, 224 кГц…., а для передачи цифрового телевидения (скорость 104000000 бит/с) — гармоники с частотами, большими в тысячи раз: 52, 156, 260, 364 МГц…. Таким образом, для цифрового телевидения нужна ширина рабочей полосы, превышающая сотни мегагерц.