100 великих изобретений
Шрифт:
С передающими трубками дело обстояло сложнее. Все предложенные изобретателями к концу 20-х годов электронные трубки отличались одним существенным недостатком — они имели очень низкую светочувствительность. Видеосигнал, снимаемый с них, был настолько слабым, что не мог обеспечить не только хорошего, но и сколько-нибудь удовлетворительного изображения. Низкую светочувствительность справедливо объясняли неэффективным использованием светового потока. Действительно, предположим, что светочувствительная мозаичная пластина разделена на 10 тысяч ячеек, и электронный луч обегает их все за 0, 1 с. Это значит, что при разряжении передаваемого изображения свет действовал на каждый отдельный фотоэлемент в продолжение всего лишь 1/100000 секунды. Если бы удалось использовать энергию светового потока, бесполезно пропадавшую в течение остальных 99999/100000 секунды, чувствительность телевизионной системы должна была бы значительно возрасти.
Одним из первых попытался разрешить эту проблему уже известный нам американский инженер Чарльз Дженкинс. В 1928 году он предложил
Идея Дженкинса была очень плодотворна, но она нуждалась в дальнейшей доработке. Прежде всего приходилось думать о том, где и как разместить десятки, а то и сотни тысяч маленьких конденсаторов (ведь каждая отдельная ячейка экрана должна была иметь свой конденсатор), затем требовалось создать коммутатор, который бы с нужной быстротой и синхронностью мог производить разрядку всех этих конденсаторов. Никакое механическое устройство не могло справиться с этой задачей. Поэтому роль коммутатора стали поручать тому же электронному лучу. В течение пяти последующих лет в разных странах было предложено несколько вариантов передающих трубок, использующих принцип накопления заряда, однако все эти проекты не были реализованы. Успешно преодолеть многочисленные препятствия посчастливилось Владимиру Зворыкину. В 1933 году на съезде общества радиоинженеров в Чикаго он объявил, что его десятилетние усилия по созданию действующей телевизионной трубки завершились полным успехом.
Эту работу Зворыкин начал в лаборатории фирмы «Вестингауз», а закончил в «Радиокорпорации Америки», где в его распоряжении была прекрасно оборудованная лаборатория и большая группа опытных инженеров. После многих опытов Зворыкин с помощью химика Изига нашел очень простой способ изготовления мозаичной светочувствительной мишени с накопительными конденсаторами. Происходило это следующим образом. Брали слюдяную пластинку размером 10 на 10 см и на одну из ее сторон наносили тонкий слой серебра. После этого пластинку помещали в печь. Тонкий серебряный слой при нагреве обретал способность сворачиваться в гранулы. Таким образом на слюдяной пластинке образовывалось несколько миллионов изолированных друг от друга гранул. Затем на серебряный слой наносили цезий, обладавший, как и селен, повышенной чувствительностью к свету. С противоположной стороны слюдяная пластинка покрывалась сплошным металлическим слоем. Этот слой как бы служил второй пластиной конденсатора по отношению к гранулам серебра со светочувствительным цезиевым слоем. В результате каждый из миллиона миниатюрных фотоэлементов служил в то же время и миниатюрным конденсатором. Этой трубке Зворыкин дал название иконоскоп.
Работа иконоскопа происходила следующим образом. Стеклянный шарообразный баллон снабжался сигарообразным цилиндрическим отростком, в котором помещался электронный прожектор. В шаре находилась мишень, установленная наклонно к оси отростка. Эта мишень, как уже говорилось, состояла из слюдяной пластинки, на одну сторону которой был нанесен металлический сигнальный слой, а на другую — светочувствительная мозаика, состоявшая из множества изолированных друг от друга фотоэлементов (5). Часть поверхности стеклянного шарового баллона трубки была сделана плоской, параллельной мишени. Через нее на мозаику проецировалось изображение, так что ось объектива была перпендикулярна плоскости мишени (это исключало всякие искажения) Рядом с мозаикой перед светочувствительным слоем была поставлена сетка (1), на которую подавался положительный относительно анода (3) заряд (анод был заземлен, а на термокатоде (4) создавался большой отрицательный потенциал). Электронный луч (2) проходил через сетку и создавал на мозаике растр. Сигнал снимался с сигнальной пластины (6) и подавался на сопротивление RН, а потом на усилительную лампу (7). Электронный луч, пробегая по фотомозаике, разряжал последовательно все ее участки. В результате образовывались электрические импульсы (видеосигналы), пропорциональные освещенности участков мозаики. Эти импульсы усиливались и подавались к радиопередатчику. В дальнейшем иконоскоп был значительно усовершенствован. Шар заменили цилиндром с отростком для электронного прожектора. Вместо сетки, которая искажала сигнал, стали применять коллектор (8) в виде металлического кольца. На внутренней поверхности цилиндра собирались фотоэлектроны, излученные мозаикой. Мишень состояла из мозаики фотоэлементов — светочувствительного слоя (2), слюдяной пластины-диэлектрика (3) и металлической пленки в качестве сигнальной пластины (4).
Иконоскоп стал последним звеном в цепи изобретений, приведших к созданию электронного телевидения. Но из-за депрессии, которой тогда были охвачены США, телевизионная сеть здесь сложилась только через несколько лет. Тем временем в 1934 году группа советских инженеров под руководством Бориса Круссера также создала иконоскоп. В Англии телевизионное вещание на аппаратуре, разработанной фирмами «Маркони» и EMI, началось в 1936 году. В том же году радиовещательная компания NBC начала регулярные телепередачи в Нью-Йорке. В Германии и СССР телевещание началось в 1938 году.
80.
РАДАРОдной из важнейших областей применения радио стала радиолокация, то есть использование радиоволн для определения местонахождения невидимой цели (а также скорости ее движения). Физической основой радиолокации является способность радиоволн отражаться (рассеиваться) от объектов, электрические свойства которых отличаются от электрических свойств окружающей среды.
Еще в 1886 году Генрих Герц обнаружил, что радиоволны способны отражаться металлическими и диэлектрическими телами, а в 1897 году, работая со своим радиопередатчиком, Попов открыл, что радиоволны отражаются от металлических частей кораблей и их корпуса, однако ни тот ни другой не стали глубоко изучать это явление.
Впервые идея радара пришла в голову немецкому изобретателю Хюльсмайеру, который в 1905 году получил патент на устройство, в котором эффект отражения радиоволн использовался для обнаружения кораблей. Хюльсмайер предлагал применить радиопередатчик, вращающиеся антенны направленного действия, радиоприемник со световым или звуковым индикатором, воспринимающим отраженные предметами волны. При всей своей несовершенности устройство Хюльсмайера содержало в себе все основные элементы современного локатора. В патенте, выданном в 1906 году, Хюльсмайер описал способ определения расстояния до отражающего объекта. Однако разработки Хюльсмайера практического применения не получили. Понадобилось тридцать лет, прежде чем идея применить радиоволны для обнаружения самолетов и кораблей смогла быть претворена в реальную аппаратуру. Осуществить это раньше было невозможно по следующим причинам. Как Герц, так и Попов пользовались для своих опытов короткими волнами. Практически же радиотехника вплоть до 30-х годов XX века применяла очень длинные волны. Между тем лучшее отражение происходит при условии, что длина волны по меньшей мере равна или (что еще лучше) меньше размеров отражающего объекта (корабля или самолета). Следовательно, длинные волны, применявшиеся в радиосвязи, не могли дать хорошего отражения. Лишь в 20-е годы радиолюбители США, которым было разрешено пользоваться для своих опытов по радиосвязи короткими волнами, показали, что на самом деле эти волны по неизвестным в то время причинам распространяются на необычайно большие расстояния. При ничтожной мощности радиопередатчиков радиолюбителям удавалось осуществить связь через Атлантический океан. Это привлекло к коротким волнам внимание ученых и профессионалов.
В 1922 году сотрудники радиоотдела морской исследовательской лаборатории Тейлор и Юнг, работая в диапазоне ультракоротких волн, наблюдали явление радиолокации. Им сейчас же пришла мысль, что можно разработать такое устройство, при котором миноносцы, расположенные друг от друга на расстоянии нескольких миль, смогут немедленно обнаруживать неприятельское судно «независимо от тумана, темноты и дымовой завесы». Свой доклад об этом Тейлор и Юнг прислали в морское министерство США, но поддержки их предложение не получило. В 1930 году один из научных сотрудников Тейлора, инженер Хайланд, ведя опыты по радиосвязи на коротких волнах, заметил, что, когда самолет пересекал линию, на которой были расположены передатчик и приемник, появлялись искажения. Из этого Хайланд заключил, что с помощью радиопередатчика и приемника, работающих на коротких волнах, можно обнаружить местоположение самолета. В 1933 году Тейлор, Юнг и Хайланд взяли патент на свою идею.
На этот раз радару суждено было появиться на свет — для этого сложились все технические предпосылки. Главное же заключалось в том, что он стал необходим военным. Техника противовоздушной обороны между двумя мировыми войнами не получила соответствующего развития. По-прежнему главную роль играли посты воздушного наблюдения, оповещения и связи, аэростаты, прожекторы, звукоуловители. Вследствие роста скорости бомбардировщиков посты оповещения надо было выдвигать за 150 и более километров от того города, для защиты которого они предназначались, и прокладывать к ним длинные телефонные линии. Однако эти посты все равно не давали полной гарантии безопасности. Даже в хорошую ясную погоду наблюдатели не могли обнаружить самолеты, летящие на небольшой высоте. Ночью или в тумане, в облачную погоду такие посты вообще не видели самолетов и ограничивались сообщениями о «шуме моторов». Приходилось располагать эти посты в несколько поясов, разбрасывать их в шахматном порядке, чтобы прикрыть ими все дальние подступы.
Точно так же прожекторы были надежны в борьбе против самолетов лишь в ясные ночи. При низкой облачности и тумане они становились бесполезны. Специально разработанные звукоуловители тоже были слабым средством обнаружения. Представим себе, что самолет находится за 10 км от наблюдательного поста. Звук мотора становился слышен слухачу звукоуловителя через 30 с небольшим секунд. За это время самолет, летевший со скоростью 600 км/ч, успевал пролететь 5 км, и звукоуловитель, следовательно, указывал место, где самолет находился полминуты назад. В этих условиях пользоваться звукоуловителем для того чтобы наводить с его помощью прожектор или зенитное орудие, было бессмысленно. Вот почему во всех странах Европы и в США за 6-7 лет до Второй мировой войны начались усиленные поиски новых средств противовоздушной обороны, способных предупредить о нападении с воздуха. В конце концов важнейшая роль здесь была отведена радиолокации. Как известно, туман, облака, темнота не влияют на распространение радиоволн. Луч прожектора быстро тускнеет в густых облаках, а для радиоволн подобных препятствий не существует. Это делало очень перспективной идею применить их для нужд ПВО.