Чтение онлайн

ЖАНРЫ

100 великих тайн Вселенной
Шрифт:

Казалось бы, гипотеза Лапласа вполне убедительно доказывала существование во Вселенной объектов, которых из-за мощной их гравитации невозможно увидеть с Земли. Но во времена Лапласа еще не знали, что скорости выше скорости света в природе просто не существует, поэтому и представление о черных дырах было неполным.

И только общая теория относительности, разработанная Эйнштейном, позволила придать более современное понимание черным дырам.

Согласно законам Ньютона при сжатии тела вдвое его притяжение возрастает вчетверо. Если же тело сжать до такого состояния, что его радиус уменьшится до нуля, то гравитация соответственно, возрастет до бесконечности.

Однако Эйнштейн

доказал, что гравитация будет расти быстрее, и скорость ее роста при дальнейшем сжатии будет увеличиваться. Тяготение же примет бесконечную величину при так называемом гравитационном радиусе небесного тела. Иначе говоря, хотя тело и не превратится в точку, то есть оно будет иметь определенные размеры, однако его гравитация будет стремиться к бесконечности.

Из всего вышесказанного вытекает, что гравитационный радиус напрямую зависит от массы небесного тела. Например, гравитационный радиус Земли равен 10 миллиметрам, в то время как реальный – 6400 километрам. Для Солнца этот радиус равняется 3000 метрам, тогда как существующий – 700000 километров.

Итак, любое небесное тело, которое сжалось до гравитационного радиуса, перестает быть источником излучения, поскольку свет или любое другое излучение не может его покинуть из-за того, что 2-я космическая скорость в этих условиях будет выше скорости света.

Вот только непонятно: какие силы в состоянии сжать звезду до гравитационного радиуса? На этот вопрос астрофизики, особо не задумываясь, отвечают: сама звезда! Дело в том, что пока она «живет», внутри нее протекают термоядерные реакции, которые и создают потоки излучения, устремляющиеся к поверхности газового шара. Но количество вещества, необходимого для реакций (например, водорода), не безгранично, поэтому за некоторое время – от нескольких десятков миллионов до миллиардов лет – оно иссякает.

После этого внутреннее давление, которое поддерживало термоядерные реакции, исчезает, и звезда начнет сжиматься под действием собственной гравитации. Причем некоторые звезды сжимаются очень быстро – катастрофически. В результате происходит так называемый гравитационный коллапс.

Доказав теоретически существование черных дыр, астрономы стали искать способы, чтобы увидеть их воочию. Эта работа началась с поиска источников с рентгеновским излучением, поскольку оно появляется только при нагревании окружающего газа до сверхвысоких температур. Но чтобы такое нагревание произошло, необходимо, чтобы было очень сильным поле тяготения. А такие поля имеют сжавшиеся звезды: белые карлики, нейтронные звезды и.... черные дыры! Но если белые карлики можно наблюдать непосредственно, то с черными дырами проблема усложняется. Однако астрономы разрешили и эту задачу.

Выяснив, что если тело имеет массу, в два раза превышающую солнечную, то оно вполне может претендовать на роль черной дыры. Измерить же массу небесного объекта относительно легко, если оно имеет пару в виде другого небесного тела.

В конце концов такую двойную систему, которая к тому же излучает в рентгене, астрономы нашли в созвездии Лебедя. Объект назвали Лебедь Х-1, и он стал первым кандидатом в черные дыры.

Находится он на расстоянии 6000 световых лет от Земли и состоит из двух тел: нормальной звезды-гиганта массой около 20 Солнц и невидимого объекта массой 10 Солнц, который излучает в рентгеновском диапазоне.

Но если из черной дыры ничто не может вырваться, то в таком случае как же она может излучать? Получается парадоксальная ситуация. Но, оказывается, излучает не сама черная дыра, а лишь то вещество, которое на нее падает. Именно по его излучению и определяется наличие черной дыры.

Обладая мощным тяготением, черная дыра

забирает у своего компаньона часть вещества, которое устремляется к ней по спирали. И чем это вещество ближе к черной дыре, тем сильнее оно разогревается. В конце концов в какой-то момент оно начинает излучать в рентгеновском диапазоне, что и фиксируют земные наблюдатели.

«Память» черных дыр

В отношении черных дыр долгое время в научных кругах преобладало мнение, что эти, наверное, самые загадочные, объекты во Вселенной ничем друг от друга не отличаются, то есть говоря человеческим языком, все они на одно лицо.

Однако исследования, проведенные в начале третьего тысячелетия американскими учеными, это устоявшееся представление о черных дырах полностью опровергли. Оказалось, они почти так же уникальны, как люди. Более того, их можно не только различить, но также выяснить их долгую «биографию», то есть то, что происходило с ними в далеком прошлом. Конечно, лишь теоретически.

Такие любопытные данные о черных дырах получила группа американских астрофизиков, возглавляемая профессором Самиром Матуром. Эти исследователи разработали новую теорию строения черных дыр, которая, как считают ученые, позволит разрешить давнюю проблему физики: так называемый информационный парадокс.

Суть же этого парадокса состоит в следующем. В соответствии с общепринятой моделью черной дыры, причем абсолютно неважно, из чего она была построена и в какой пропорции – из протонов или электронов, из газа, планет или звезд, – колоссальная гравитация превращает весь этот материал в абсолютно однородную структуру.

Из этого в свою очередь следовало, что внутренняя структура всех черных дыр практически одинакова. Отличаются же они друг от друга лишь своими гигантскими массами и диаметром горизонта событий, в пределах которого вырваться из смерча черной дыры ничто уже не в состоянии.

Профессор Самир Матур доказал, что черные дыры не обезличены, а уникальны и неповторимы

Ранее в соответствии с расчетами знаменитого физика Стивена Хокинга, получалось, что оказавшаяся в черной дыре частица никакого влияния на нее не оказывает. Единственное, что она может сделать, – увеличить массу этого космического монстра.

Но в этой теории ученые обнаружили один существенный недостаток: она противоречила одному из законов квантовой механики – закону обратимости, который гласит, что теоретические вычисления должны объяснить не только процесс, связанный с образованием черной дыры, но и вернуться к тем первоначальным условиям, которые этот механизм образования «включили».

Это значило, что если принять за основу построения Хокинга, из которых следовало, что все черные дыры одинаковы, то даже теоретически нельзя было проследить «историю» хотя бы одной из них к ее уникальному началу. То есть любая информация о частицах, которые создали черную дыру, терялась в ней навсегда.

Именно в таком положении вещей Матур однажды усомнился. И, чтобы опровергнуть эту концепцию, он воспользовался широко известной в настоящее время теорией струн, которая предполагает, что все фундаментальные частицы состоят из объектов, именуемых струнами.

В соответствии с существующими теоретическими построениями струны могут вести себя самым разным образом: они могут переплетаться, свиваться в кольца, формировать спирали. Мы же в нашем масштабе воспринимаем эти комбинации струн как частицы, составляющие мир.

Поделиться с друзьями: