100 великих учёных
Шрифт:
Первые научные исследования Тамм в начале двадцатых годов проводил под руководством Леонида Исааковича Мандельштама, профессора Одесского политехнического института, выдающегося советского учёного, внёсшего вклад во многие разделы физики. Тамм занимался электродинамикой анизотропных твёрдых тел (т. е. таких, которые обладают самыми различными физическими свойствами и характеристиками) и оптическими свойствами кристаллов. Тамм поддерживал тесную связь с Мандельштамом вплоть до смерти последнего в 1944 году.
Обратившись к квантовой механике, в 1930 году Тамм объяснил акустические колебания и рассеяние света в твёрдых средах. В его работе впервые была высказана идея о квантах звуковых волн (позднее
В 1930 году Тамм стал профессором и заведующим кафедрой теоретической физики МГУ. В 1933 году он получил степень доктора физико-математических наук, тогда же стал членом-корреспондентом Академии наук СССР. Когда академия в 1934 году переехала из Ленинграда в Москву, Тамм стал заведующим сектором теоретической физики академического Института им. П. Н. Лебедева, и этот пост он занимал до конца жизни.
В конце двадцатых годов важную роль в новой физике играла релятивистская квантовая механика. Английский физик Дирак развил релятивистскую теорию электрона. В этой теории, в частности, предсказывалось существование отрицательных энергетических уровней электрона — концепция, отвергавшаяся многими физиками, поскольку позитрон (частица, во всём тождественная электрону, но несущая положительный заряд) ещё не был обнаружен экспериментально. Однако Тамм доказал, что рассеяние низкоэнергетических квантов света на свободных электронах происходит через промежуточные состояния электронов, находящихся при этом в отрицательных энергетических уровнях. В результате он показал, что отрицательная энергия электрона является существенным элементом теории электрона, предложенной Дираком.
Тамм сделал два значительных открытия в квантовой теории металлов, популярной в начале тридцатых годов. Вместе со студентом С. Шубиным он сумел объяснить фотоэлектрическую эмиссию электронов из металла, т. е. эмиссию, вызванную световым облучением. Второе открытие — он установил, что электроны вблизи поверхности кристалла могут находиться в особых энергетических состояниях, позднее названных таммовскими поверхностными уровнями, а это в дальнейшем сыграло важную роль при изучении поверхностных эффектов и контактных свойств металлов и полупроводников.
Одновременно он начал проводить теоретические исследования в области атомного ядра. Изучив экспериментальные данные, Тамм и С. Альтшуллер предсказали, что нейтрон, несмотря на отсутствие у него заряда, обладает отрицательным магнитным моментом (физическая величина, связанная, помимо прочего, с зарядом и спином). Их гипотеза, к настоящему времени подтвердившаяся, в то время расценивалась многими физиками-теоретиками как ошибочная. В 1934 году Тамм попытался объяснить с помощью своей так называемой бета-теории природу сил, удерживающих вместе частицы ядра. Согласно этой теории, распад ядер, вызванный испусканием бета-частиц (высокоскоростных электронов), приводит к появлению особого рода сил между любыми двумя нуклонами (протонами и нейтронами). Используя работу Ферми по бета-распаду, Тамм исследовал, какие ядерные силы могли бы возникнуть при обмене электроннонейтринными парами между любыми двумя нуклонами, если такой эффект имеет место. Он обнаружил, что бета-силы на самом деле существуют, но слишком слабы, чтобы выполнять роль «ядерного клея». Год спустя японский физик Хидеки Юкава постулировал существование частиц, названных мезонами, процесс обмена которыми (а не электронами и нейтрино, как предполагал Тамм) обеспечивает устойчивость ядра.
В 1936–1937 годах Тамм и Илья Франк предложили теорию, объяснявшую природу излучения, которое обнаружил Павел Черенков, наблюдая преломляющие среды, подверженные воздействию гамма-излучения. Хотя Черенков описал
данное излучение и показал, что это не люминесценция, он не смог объяснить его происхождение. Тамм и Франк рассмотрели случай электрона, движущегося быстрее, чем свет в среде. Хотя в вакууме такое невозможно, данное явление возникает в преломляющей среде. Следуя этой модели, оба физика сумели объяснить излучение Черенкова. Тамм, Черенков и Франк проверили также и другие предсказания данной теории, которые нашли своё экспериментальное подтверждение. Их работа привела, в конце концов, к развитию сверхсветовой оптики, нашедшей практическое применение в таких областях, как физика плазмы.В СССР то было время «большой чистки». Шли чудовищные публичные процессы. На одном из них появился в качестве «свидетеля» крупный донбасский инженер Л. Е. Тамм, любимый брат Игоря Евгеньевича. Во всех газетах были опубликованы его невероятные признания в том, что по указанию Пятакова он готовил к взрыву коксовые батареи. Его увезли в тюрьму и расстреляли.
Игорь Евгеньевич держался, хотя переживания его были очень тяжелы. Он не отрёкся ни от брата, ни от попавших в маховик репрессий друзей.
Теоретический отдел института, созданный и руководимый Таммом, был ликвидирован, а все его сотрудники распределены по другим лабораториям. Но научный семинар теоретиков продолжал еженедельно работать под руководством Тамма, научные контакты полностью сохранялись, а впоследствии, после возвращения института из эвакуации в 1943 году, как-то незаметно прежний теоретический отдел был восстановлен. Такое вялое реагирование дирекции института было возможно, конечно, только потому, что директором был С. И. Вавилов.
В 1943 году начались и быстро развивались советские работы по созданию атомного оружия. Казалось бы, вот тут и необходим был Тамм с его широтой охвата самых разных областей физики, с его блестящим талантом. Но его фамилию из списка вычеркнул Жданов. Только в 1946 году Тамма привлекли к рассмотрению некоторых вопросов, более «безопасных» с точки зрения секретности. Так появилась его работа «О ширине фронта ударной волны большой интенсивности», разрешённая к опубликованию лишь через двадцать лет.
Прошло, однако, всего два года, и то ли потому, что Жданов умер, то ли благодаря личному влиянию Курчатова положение изменилось. Тогда возникла задача создания ещё более страшного оружия — водородной бомбы. Игорю Евгеньевичу было предложено организовать в теоретическом отделе группу для изучения вопроса, хотя сама принципиальная возможность создать такое оружие казалась ещё очень проблематичной.
Игорь Евгеньевич принял это предложение и собрал группу из молодых учеников-сотрудников. В неё вошли, в частности, В. Л. Гинзбург и А. Д. Сахаров, уже через два месяца выдвинувшие две важнейшие оригинальные и изящные идеи, которые и позволили создать такую бомбу менее чем за пять лет. В 1950 году Тамм и Сахаров переехали в сверхсекретный город-институт, известный теперь всем как Арзамас-16.
Работа над реализацией основных идей была необычайно напряжённой и трудной. В Арзамасе-16 Игорь Евгеньевич сыграл огромную роль и своими собственными исследованиями, и как руководитель коллектива теоретиков. Он даже был одним из участников реального испытания первого «изделия» летом 1953 года.
В Арзамасе-16 учёный не только работал. Игорь Евгеньевич много читал, особенно любил Агату Кристи и вообще иностранные детективы. Он обожал играть в шахматы, всюду находил партнёра и играл с необычайным темпераментом, искренне переживая как успех, так и поражение. Даже на даче, в Жуковке, по словам В. А. Кириллина (бывшего заместителя главы правительства и близкого дачного соседа), он приходил к нему «играть в шахматы — но не приходил, а прибегал…».