Чтение онлайн

ЖАНРЫ

120 детских вопросов о физике и окружающем мире
Шрифт:

Часто можно услышать вопрос: что тяжелее – тонна железа или тонна дерева? Иногда вместо дерева вес железа сравнивают с пухом, но суть от этого не меняется. Нередко люди отвечают, что тонна железа тяжелее, кто-то склонен считать, что железо и дерево весят одинаково, а кто-то делает выбор в пользу дерева. Однако здесь не всё так однозначно, и ответ зависит от того, с какой стороны посмотреть на эту задачку.

Для начала рассмотрим, что представляет собой тонна дерева и тонна железа. Плотность железа составляет почти 7,9 г/см3, плотность древесины зависит от породы, для примера возьмём нашу русскую берёзку с плотностью около 0,65 г/см3.

Поэтому тонна дерева занимает примерно в 12 раз больший объем, чем тонна железа. Это имеет важные последствия.

Во-первых, куб железа весом в тонну оказывает большее давление на опору, чем куб дерева такой же массы. Поэтому железный куб будет сильнее проминать грунт или может сломать опору, а всё это выглядит так, будто железо тяжелее дерева.

Во-вторых, наши кубы погружены в воздушный океан, поэтому на них, как и на любые другие тела, действует выталкивающая сила Архимеда. За счёт этого тела теряют часть своего веса, и чем больше объём тела, тем больше выталкивающая сила. Значит, большой куб из дерева будет больше терять в своём весе (а именно – чуть больше 1,7 кг против 0,17 кг у железа), поэтому тонна железа будет весить больше.

Однако куда более интересно третье следствие. Предположим, что мы можем взвесить тонну железа и тонну дерева на Земле, и переместиться с этим добром на Луну или на гипотетическую планету без атмосферы и с силой притяжения 1g. Что мы увидим, если теперь произведём взвешивание при отсутствии силы Архимеда? А то, что тонна дерева окажется тяжелее! Причина проста: при взвешивании тонны железа и тонны дерева на Земле, мы вынуждены компенсировать выталкивающую силу Архимеда, добавляя уже указанную выше массу – 1,7 кг для дерева и 170 г для железа. Естественно, при взвешивании в безвоздушном пространстве на тела не действует выталкивающая сила, и тонна железа будет весить 1001,7 кг, а тонна железа – 1000,17 кг. Выходит, истинная тонна дерева, взвешенного в воздухе, выше истинного веса железа, взвешенного в воздухе!

Вот и выходит, что у простой задачи есть несколько решений, и каждый ответ – правильный.

Почему лёд скользкий, а стекло – нет?

Встав на лёд в обычной обуви или на коньках, вы сразу покатитесь, но встав на гладкое стекло этого не случится. Почему же лёд скользкий, а стекло – нет?

Причина скольжения на льду очень проста: между поверхностью льда и скользящим по нему телом образуется тонкий слой воды, который выступает в роли смазки – она снижает коэффициент трения и делает лёд скользким. То же можно наблюдать и на мокром полу – поскользнуться на нём проще простого, даже если в сухом состоянии он не скользит!

Однако здесь же возникает вопрос – а откуда на льду появляется вода? Ведь лёд может существовать только на морозе, воде при такой температуре взяться неоткуда. Интересно, что этим вопросом учёные задаются почти два века, и явного ответа на него нет. Но есть кое-какие предположения.

Одна из причин появления воды на поверхности льда – давление. Оказывается, при повышении давления температура плавления льда снижается, а значит, при достаточном давлении со стороны коньков лёд начнёт плавиться даже на сильном морозе.

Но вот незадача: проведённые расчёты показывают, что давления от коньков не хватает для таяния льда! На выручку приходят некоторые особенности поверхности льда. Лёд не идеально гладкий – он покрыт большими и микроскопическими неровностями, поэтому фактическая площадь опоры конька в сотни раз меньше, чем геометрическая площадь пятна контакта.

Значит, и давление в месте контакта каждой микронеровности льда с микронеровностью конька в сотни, тысячи и даже десятки тысяч раз выше расчётного. Этого более чем достаточно для плавления и образования водяной плёнки!

Теперь понятно, что на стекле или любой другой гладкой поверхности без смазки трение остаётся сухим, а на льду трение всегда «мокрое», и именно поэтому он скользкий.

Куда летит камень?

Возьмите кучу камней и ради удовольствия покидайте их. Желательно не в окно, а просто в чистом поле. Вскоре вы увидите, что камни летят примерно по одинаковому пути, а если вы произведёте вычисления, то установите: каждый камень, независимо от угла и силы первоначального броска, летит по одной траектории – параболе. И по параболической траектории движутся любые тела, брошенные в поле тяжести.

Но почему камень летит именно по параболе? Всё дело в так называемом принципе наименьшего действия (он также известен, как принцип Гамильтона или принцип стационарного действия).

Прежде, чем разобраться в существе этого принципа, нужно выяснить, что такое действие. В физике под действием понимают физическую величину, которая выступает мерой движения тела или физической системы. Если рассматривать окружающий нас макроскопический мир, за действие можно принять разность кинетической и потенциальной энергии тела за всё время его движения.

Поэтому под принципом наименьшего действия мы понимаем следующее: любое тело движется по такому пути, на котором разность кинетической и потенциальной энергии будет минимальной. И так уж вышло, что эта разность минимальна только при движении тела по параболической траектории.

Однако самое интересное здесь не сам принцип наименьшего действия, а тот факт, что тела «знают» о нем. В сущности, ничто не ограничивает свободу полёта брошенного камня, он может лететь сколь угодно сложными зигзагами, непредсказуемо меняя свою скорость и направление движения. Однако в реальности мы наблюдаем, что камень всегда «выбирает» параболическую траекторию с наименьшим действием. Этот вопрос имеет философский характер и на него нет однозначного ответа.

Принцип наименьшего действия универсален как для макромира, так и для микромира, в котором правит квантовая механика. Причём в квантовой механике (а точнее, в её копенгагенской интерпретации) считается, что любая движущаяся микрочастица «знает» о существовании всех возможных траекторий своего движения, и движется сразу по ним всем (а их может быть бесконечное количество!). Но при наблюдении с наибольшей вероятностью мы обнаружим эту частицу именно на той траектории, на которой соблюдается принцип наименьшего действия.

Как видите, простой полёт камня и микрочастицы – это на не так уж и просто. Несмотря на то, что нам известен принцип наименьшего действия, и мы можем производить сложные расчёты траекторий движения физических тел, мы не можем дать однозначного ответа, как эти тела «выбирают» именно эти траектории.

Существует ли центробежная сила?

Что за странный вопрос, скажете вы, конечно же центробежная сила существует! Иначе как можно объяснить поведение тел при вращении? Что прижимает вас к дверце автомобиля при резком повороте? А какая сила прижимает к стенкам жидкости в центробежных насосах? Все эти и многие другие примеры не оставляют нам никаких шансов усомниться в существовании центробежной силы.

Поделиться с друзьями: