Чтение онлайн

ЖАНРЫ

40 задач на Python
Шрифт:

2. `for wx, wy in wolf_positions: …`: Перебираем текущие позиции всех волков.

3. `_, target = bfs((wx, wy), sheep_positions + [pastukh])`: Ищем ближайшую цель (овца или пастух) для волка.

4. `if target: …`: Если найдена цель, определяем направление движения волка.

5. `tx, ty = target`: Координаты ближайшей цели.

6. `if wx < tx: wx += 1 …`: Если волк находится левее цели, он движется вправо. Аналогично для других направлений.

7. `new_wolf_positions.append((wx, wy))`: Добавляем обновленные координаты волка в список.

8. `wolf_positions = new_wolf_positions`:

Обновляем позиции волков.

Обновление поля и проверка столкновений

```python

field = [['.' for _ in range(M)] for _ in range(N)]

field[pastukh[0]][pastukh[1]] = 'P'

new_sheep_positions = []

for x, y in sheep_positions:

if (x, y) not in wolf_positions:

field[x][y] = 'S'

new_sheep_positions.append((x, y))

sheep_positions = new_sheep_positions

for x, y in wolf_positions:

if field[x][y] == 'P':

field[x][y] = 'P'

else:

field[x][y] = 'W'

1. `field = [['.' for _ in range(M)] for _ in range(N)]`: Пересоздаем поле, заполняя его пустыми клетками.

2. `field[pastukh[0]][pastukh[1]] = 'P'`: Обновляем позицию пастуха на поле.

3. `new_sheep_positions = []`: Создаем список для обновленных позиций овец.

4. `for x, y in sheep_positions: …`: Перебираем текущие позиции овец.

5. `if (x, y) not in wolf_positions: …`: Если овца не съедена волком, добавляем её в обновленное поле

В данной задаче была успешно смоделирована ситуация на лугу, где пастух старается спасти овец от волков. Мы рассмотрели основные этапы решения задачи, включая чтение входных данных, инициализацию игрового поля, реализацию вспомогательных функций для проверки валидности координат и поиска кратчайшего пути, а также логику движения пастуха и волков.

2. Пересечения кругов

Условие задачи: Даны координаты центров и радиусы двух кругов на плоскости. Необходимо определить, пересекаются ли эти круги.

Входные данные:

– Четыре вещественных числа: ( x_1, y_1, r_1, r_2 )

– ( x_1, y_1 ) – координаты центра первого круга.

– ( r_1 ) – радиус первого круга.

– ( x_2, y_2 ) – координаты центра второго круга.

– ( r_2 ) – радиус второго круга.

Выходные данные:

– Одно слово "YES", если круги пересекаются, и "NO" в противном случае.

Примеры:

Пример 1:

Входные данные: 0 0 5 3 0 0 3

Выходные данные: YES

Пример 2:

Входные данные: 0 0 2 6 0 0 3

Выходные данные: NO

Решение: Для того чтобы определить, пересекаются ли два круга, можно воспользоваться следующими правилами:

1. Вычислим расстояние ( d ) между центрами кругов.

2. Если ( d ) меньше суммы радиусов ( r_1 ) и ( r_2 ) и больше разности радиусов ( |r_1 – r_2| ), то круги пересекаются.

3. Если ( d ) равно сумме радиусов, то круги касаются друг друга внешне.

4. Если ( d ) равно разности радиусов, то круги касаются друг друга внутренне.

5. Во всех других случаях круги

не пересекаются.

Формула для вычисления расстояния между центрами кругов:

[ d = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2} \]

Псевдокод:

ввод x1, y1, r1, x2, y2, r2

вычислить d = sqrt((x2 – x1)^2 + (y2 – y1)^2)

если d <= r1 + r2 и d >= |r1 – r2| тогда

вывод "YES"

иначе

вывод "NO"

```

Псевдокод – это упрощенный язык описания алгоритмов, который используется для представления логики решения задачи без привязки к конкретному языку программирования. Он обычно используется для описания шагов алгоритма на естественном языке, что облегчает понимание и написание кода.

В псевдокоде часто используются ключевые слова, похожие на те, что применяются в реальных языках программирования, такие как "если", "то", "цикл", "вывод" и т. д. Однако синтаксис псевдокода более гибкий и менее строгий, чем у конкретного языка программирования.

Псевдокод позволяет описать алгоритм более наглядно и понятно, не углубляясь в детали реализации на определенном языке. Он используется в образовании, при разработке алгоритмов и при описании решения задач до того, как приступить к программированию на конкретном языке.

Реализация на Python:

```python

import math

# Чтение входных данных

x1, y1, r1 = map(float, input.split)

x2, y2, r2 = map(float, input.split)

# Вычисление расстояния между центрами кругов

d = math.sqrt((x2 – x1) ** 2 + (y2 – y1) ** 2)

# Проверка пересечения кругов

if d <= r1 + r2 and d >= abs(r1 – r2):

print("YES")

else:

print("NO")

```

Эта задача помогает понять, как использовать простую геометрию и математические формулы для определения пересечения геометрических фигур. Решение данной задачи иллюстрирует применение расстояний и неравенств для определения условий пересечения кругов.

3. Задача о пяти домиках

Условие задачи: На улице расположены пять домов, пронумерованных от 1 до 5. Каждый дом занят каким-то жителем. Дома расположены вдоль прямой, и между некоторыми соседними домами есть заборы. Необходимо определить минимальное количество переездов, чтобы жители домов удовлетворили следующим условиям:

1. Житель дома 1 не должен жить с жителем дома 2.

2. Житель дома 2 не должен жить с жителем дома 3.

3. Житель дома 3 не должен жить с жителем дома 4.

4. Житель дома 4 не должен жить с жителем дома 5.

Каждый переезд стоит одну единицу. В начальный момент времени все жители уже живут в соответствии с условиями задачи.

Входные данные:

– Пять чисел от 1 до 5, представляющих номера домов, в которых в настоящее время живут жители.

Выходные данные:

– Одно целое число – минимальное количество переездов, которое необходимо совершить.

Примеры:

Пример 1:

Входные данные: 1 2 3 4 5

Выходные данные: 0

Поделиться с друзьями: