Алгоритм изобретения
Шрифт:
Нужен иной способ - несложный, экономичный и, конечно, безвредный для рыб. Поэтому, в частности, не надо использовать реактивы, выделяющие кислород.
Задача совсем простая. Попробуйте ее решить сразу (без анализа) по таблице типовых приемов.
Задач а 10
При полировке оптических стекол используют дерево и ткани, а в последние годы - смолы и пластмассы. В зону соприкосновения стекла и инструмента подается водная взвесь полировального порошка.
Однако этот традиционный способ далек от совершенства. Полировку приходится вести на низких скоростях, так как смолы, ткани, дерево и пластмассы с увеличением числа оборотов сильно разогреваются и теряют необходимые качества.
Как повысить скорость обработки?
Вероятно, вы сразу подумаете о подаче охлаждающей
Это тоже очень простая задача. Решите ее, используя таблицу типовых приемов.
Задач а 11
Для испытания материалов на длительную прочность в условиях высоких температур и агрессивных сред используют прочные камеры - сейфы. К образцу материала прикрепляют груз, после чего заполняют камеру агрессивным веществом, герметично закрывают и включают систему обогрева (тепловые элементы размещены в стенках камеры). Вес груза - от 0,02 кг до 2 кг.
Основная трудность при таких испытаниях связана с определением момента разрыва образца. Правда, здесь
не требуется особой точности. Достаточно, если момент обрыва будет зафиксирован с точностью до нескольких секунд, так как испытания ведутся иногда в течение многих дней. Сложность в другом: трудно обеспечить надежность сигнальных устройств, размещенных внутри камеры в сильно агрессивной среде. Нужно, чтобы момент обрыва определялся снаружи. Аппаратура, улавливающая шум падения груза, не годится - она слишком сложна и ненадежна.
Примем для определенности, что камера имеет размеры 0,4 X 0,3 м X 0»3 м, а толщина стальных стенок - около 10 мм. Итак, нужен предельно простой и надежный способ регистрации момента разрыва образца. Помните: не должно быть ни одного сквозного отверстия в стенках камеры!
Начните анализ задачи с шага 2-3.
Задача 12
Имеется пневматический конвейер. Он представляет собой наклонную трубку, по дну которой снизу вверх - под действием потока воздуха - перемещаются (катятся) мелкие штучные грузы. В нашем случае - помидоры. Трубка идет с этажа на этаж, в нескольких местах меняет направление (для наглядности можно считать, что труба расположена вдоль обычной лестницы). Недостаток системы: помидоры налетают друг на друга, ударяются, портятся.
Нужен способ пневматической транспортировки, при котором грузы будут двигаться по заданной программе с абсолютной надежностью: на определенном расстоянии друг от друга и в определенном темпе. Отказываться от пневматической системы транспортировки крайне нежелательно: потребуете» новое оборудование, а его у нас нет.
Начните решение задачи с шага 2-3.
Задача 13
В электронных схемах высокой частоты применяют так называемые линии задержки. Они служат для сдвига выходного сигнала по времени. Линии задержки представляют собой слоистую конструкцию - слои материала с низким и высоким омическими сопротивлениями чере-
дуются. Такими парами могут быть, например, стекло и сталь, сплав Вуда и медь. Толщина слоев составляет 0,1 - 0,01 мм, точность изготовления требуется высокая.
Известные способы изготовления (прессование, прокатка) малопроизводительны, дороги, дают много брака. Из некоторых пар вообще не удается получить слоистую конструкцию: материалы, составляющие пару, обычно резко отличаются по температуре плавления (стекло - до 800°, сталь-1500°, сплав Вуда -70°, медь-1083°); на тонкую пластину из сплава Вуда наложить раскаленную медную пластину, сплав Вуда просто
растает.Нужен принципиально новый способ изготовления слоистых конструкций.
Эта задача сложнее двух предыдущих: барьеры на пути к ее решению весьма высокие. Начните решение с шага 2-2.
Задача 1 4
Трубопровод далеко не всегда удается загрузить каким-либо одним нефтепродуктом.-Поэтому была предложена последовательная транспортировка, при которой разные нефтепродукты передаются по одному трубопроводу друг за другом, так сказать, встык. Способ этот в принципе имеет большое преимущество: вместо нескольких параллельных трубопроводов можно построить один. Но широкого распространения последовательная перекачка пока не получила.
Причина в том, что при перекачке одного горючего вслед за другим в зоне их соприкосновения неизбежно происходит смешивание. В связи с этим возникают сложные технические проблемы. Как, например, точно установить, когда кончается чистый бензин и начинается смесь его с дизельным топливом? А где кончается эта смесь и начинается последующий чистый продукт? Как своевременно отделить смесь от чистых продуктов и избежать загрязнения топлива, ранее поступившего в разервуары конечного пункта перекачки?
До 1960 года почти на всех магистральных нефтепроводах применялся ручной способ контроля: во время очередного цикла перекачки лаборанты контрольных пунктов в любую погоду, днем и ночью часами просиживали в сырых колодцах трубопровода, производя многочисленные анализы.
Рис. 30. Как уменьшить потери нефтепродуктов, передаваемых по одному трубопроводу?
Делалось это кустарно: прямо из трубопровода брали пробу, наливали ее в колбу и по уровню плавающего в ней поплавка определяли плотность нефтепродукта. Но разность плотности светлых горючих весьма незначительна, и «ловить» таким путем границы смешения было почти невозможно. В результате за каждый цикл перекачки только по одному трубопроводу среднего диаметра (500 мм) вместе со смесью уходило в брак от 800 до 1200 тонн чистых продуктов.
Было внесено несколько предложений. Например, предложили прибор «нефтеденсиметр», который определял сортность нефтепродуктов по их плотноети тоже на основе поплавка, но установленного в горловине трубопровода. Предлагалось также осуществлять контроль гамма-плотномером. Этот прибор действует при помощи гамма-излучений радиоактивных изотопов, устанавливая качество горючего опять-таки по его плотности. Есть ультразвуковые установки, измеряющие скорость распространения звука в жидкости.
Посмотрите на рис. 30. По трубопроводу встык движутся два разных нефтепродукта Л и Б. На стыке образуется смесь А + Б. Если бы удалось точно фиксировать границы I и II, то потери не превышали бы объема смеси. Но из-за неточности контроля приходится начинать отделение смеси раньше (линии III), а заканчивать позже (линия IV), чем это теоретически возможно. Совершенствуя методы контроля, приближают линию III к I и линию IV к II. Потери при этом уменьшаются, но смесь А + Б образуется по-прежнему. Целесообразнее обходной путь: вообще избежать образование смеси А + Б, использовав какой-то разделитель между А и Б.
Рис. 31. Разделители с манжетными и дисковыми уплотнителями.
Известны разделители (рис. 31) с манжетными, дисковыми и щеточными уплотнителями. Однако эти «ершики» имеют принципиальные недостатки: смесеобразование не предотвращается - нефтепродукты просачиваются через зазоры между стенками трубы и уплотнителями; «ершики» застревают в трубопроводах, а кое-где вообще не могут пройти. На трассе (через определенные расстояния) стоят промежуточные насосные пункты. Понятно, что пройти через насосы твердый разделитель не может.