Чтение онлайн

ЖАНРЫ

Ароматерапия. Справочник
Шрифт:

Освобождающаяся энергия используется клетками для совершения различных работ. Когда молекула АДФ вновь заряжается энергией, она превращается в АТФ—клеточный аккумулятор, хранитель энергии.

Макроэнергетические соединения могут накапливаться не только в виде АТФ, но и в виде креатинфосфата [Сойфер В.Н., 1975].

Таким образом, АТФ является основным источником энергии, аккумулированной в клетках организма.

Исследовано влияние РАВ на содержание АТФ в эритроцитах крыс линии Wistar, находящихся в различных газовых средах. Установлена четкая зависимость содержания АТФ от РАВ. Так, в ЕА АТФ была на уровне 30,1 мкг/мл. В ИА содержание АТФ снизилось до 23,8 мкг/мл.

У крыс в БИА уровень АТФ превысил норму и составил 34,2 мкг/мл.

Иначе

говоря, РАВ способствуют восстановлению аккумуляции энергии АТФ в клетках до нормы.

Свободная энергия в эритроцитах. В организме постоянно протекают процессы обмена веществ, сопровождающиеся выделением энергии, которая используется для синтеза белков и нуклеиновых кислот, липидов, углеводов. Энергия необходима клеткам для совершения работы, выделения продуктов обмена и т.д. Если химический процесс протекает за счет энергии извне (эндотермически), он обозначается знаком «плюс» (+), если процесс сопровождается выделением тепла (экзотермически), такая реакция обозначается знаком «минус» (-).

Мы в течение 3 мес исследовали характер изменения свободной энергии в эритроцитах 3 групп крыс, находящихся в различных газовых средах: ЕА, ИА, БИА.

Рис. 5. Интегральные показатели биоэнергетики клеток крови крыс, содержащихся в условиях различных газовых сред.

а — естественная атмосфера; б — зависимость показателей биоэнергетики клеток крови животных, содержащихся в искусственной атмосфере, по отношению к клеткам крови животных, находящихся в естественной атмосфере; в — зависимость показателей биоэнергетики клеток крови у животных, содержащихся в искусственной, но биогенезированной атмосфере, по отношению к клеткам животных, находящихся в естественной атмосфере.

Исследования, проведенные на мониторе биологической активности ЛКТБ 2277 фирмы «LKB—Producted AB Stockholm» (Sweden), показали зависимость биоэнергетики эритроцитов от РАВ.

ВИА резко нарушились химические процессы, что сопровождалось выделением тепла: 556 усл.ед. (рис. 5). В БИА химические процессы практически протекали на том же уровне, что и в ЕА (исследования проведены на мониторинге биологической активности ЛКТБ 2277 фирмы «IKB-Producted AB»).

Таким образом, у животных в ИА наблюдалось резкое снижение свободной энергии. В БИА уровень свободной энергии приблизился к таковому в контрольной группе (ЕА) и даже незначительно превысил его (+ 32,8 усл.ед.).

Мембраны клеток. Значение мембран в жизни человека разнообразно. Они передают различную информацию, регулируют многие внутриклеточные процессы, узнают себе подобные клетки, способны генерировать электрические импульсы. Мембраны регулируют поступление молекул и ионов в клетку и их обратный выход из клетки. В мембраны клетки включены рецепторы гормонов, пептидов и др., что обеспечивает точность регуляции и специфичность белков-рецепторов.

Не исключено также присутствие на клетках организма рецепторов для некоторых компонентов РАВ. Это подтверждается тем, что в состав ЭМ входят лейкины. Известно, что некоторые растительные лейкины (фитогемагглютинин, конковалин А и др.) обладают митогенной активностью, что позволяет предполагать наличие на мембранах лимфоцитов рецепторов по отношению к их компонентам.

Если это будет доказано, то расшифруется еще одна из сторон механизма действия РАВ.

В мембранах находятся различные ферменты, биооксиданты, возможно, и некоторые компоненты РАВ. Специальные мембраны органов чувств преобразуют энергию звука, света в электрические импульсы. Мембраны рецепторных клеток воспринимают и передают центральной нервной системе информацию о запахах [Бергельсон Л.Д., 1975; Сим Э., 1985; Райт Р.Х., 1966].

Проведены экспериментальные исследования влияния РАВ на проницаемость цитоплазматических мембран дрожжей аэробного типа метаболизма. Дрожжи культивировали в атмосфере, лишенной РАВ, и в такой же атмосфере с введением в ее

состав РАВ розмарина в концентрации 0,001 мг/м.куб. атмосферы.

В контрольном варианте дрожжи выращивали в естественной атмосфере.

При оценке действия атмосферы на метаболизм дрожжей была использована активность терминального фермента спиртового брожения — алкогольдегидрогеназы (АДГ) и арилэстеразы — фермента, участвующего в транспорте сильно диссоциированных органических кислот через цитоплазматическую мембрану. С целью изучения состояния цитоплазматических мембран определяли содержание эфиров высших жирных кислот в культуральной жидкости.

Установлено, что культивирование тест-объектов в атмосфере с отсутствием РАВ отражается на их метаболизме. Зарегистрировано достоверное снижение активности АДГ от 90,4 до 0,3 ед/г (Р<0,001) и арилэстеразы от 1200 до 850 ед/г (Р<0,05). Последнее, вероятно, связано с нарушением барьерной функции цитоплазматической мембраны.

Введение в атмосферу РАВ розмарина оказывает нормализующее действие на измененный метаболизм тест-объектов, снижая концентрацию эфиров высших жирных кислот и интенсифицируя активность АДГ и арилэстеразы, приближая ее к показателям контрольной группы.

Проведенные исследования указывают на перспективность дальнейшего изучения РАВ в качестве стабилизаторов мембранных структур.

Стабилизация цитоплазматических мембран наблюдалась нами в определенном интервале концентрации ЭМ от 0,05 до 0,0005%. При этом стабилизация мембран микробных клеток отмечена при значительно меньшей концентрации ЭМ, чем стабилизация мембран лимфоцитов. В ИА резистентность мембран практически не отличалась от ЕА (соответственно 0,55 и 0,53) и достоверно отличалась от резистентности мембран клеток в ИА (0,53 и 0,25 соответственно).

Приведенные данные свидетельствуют о том, что длительное (до 3 мес) отсутствие в атмосфере РАВ сопряжено с достоверным снижением резистентности мембран эритроцитов. Постоянная биогенизация атмосферы сопровождается восстановлением резистентности мембран до нормы.

Ионы калия и состояние трансмембранного потенциала. Большинство энергетических и электрофизиологических процессов в организме протекают с изменением концентрации электролита внутри и вне клеток. Калий является важнейшим внутриклеточным катионом. Наблюдаемый сдвиг в балансе калия обусловлен изменением его содержания в клетках. Калий принимает участие в аккумуляции и в освобождении энергии в организме.

Натрий — главный ион внеклеточной жидкости. Содержание К + в клетках в 20 раз выше, чем концентрация Na + (Na/K — 1:20), а содержание внеклеточного К + в 28 раз меньше концентрации внеклеточного Na + (Na/K — 28:1). Ионы натрия и калия стремятся уйти туда, где их концентрация меньше: ионы калия — из клетки, ионы натрия — в клетку.

Функцию по транспортировке ионов калия и натрия через биологические мембраны выполняет Na-K-зависимая АТФаза-фермент. Ка +-АТФаза восстанавливает исходные градиенты, откачивая наружу и закачивая К + внутрь нейрона. При снижении мембранного потенциала открываются Na-каналы. При этом в нейрон-клетку поступают положительные ионы, что приводит к перемене знака потенциала (минус — снаружи, плюс — внутри). Возбуждение распространяется по нейрону и аксону. К + каналы открываются позднее.

Градиент К + противоположен градиенту Na +, в связи с чем ионы К + перемещаются наружу, при этом мембранный потенциал возвращается к исходному состоянию.

Итак, поток Na + внутрь клетки приводит к переразрядке мембран, противоположно направленный поток К + — к восстановлению исходного потенциала покоя.

Нами исследовано влияние РАВ на проницаемость мембран клеток для ионов калия и состояние трансмембранного потенциала. В ЕА проницаемость мембран для калия составляла 0,37. При длительном отсутствии РАВ в атмосфере гермообъема проницаемость мембран для ионов калия повысилась до 0,6. В БИА показатели проницаемости мембран для ионов калия достоверно не изменялись.

Поделиться с друзьями: