Чтение онлайн

ЖАНРЫ

Астероидно-кометная опасность: вчера, сегодня, завтра
Шрифт:

б) наличие нескольких максимумов численности метеоров;

в) постоянное смещение максимума;

г) слоистая структура роев в широтном направлении;

д) наличие скоплений крупных частиц;

е) волокнистая структура роев в продольном направлении.

Рассмотрим сначала структуру и эволюцию молодых и очень молодых метеороидных роев и метеорных ассоциаций, с которыми принято в настоящее время связывать ряд таких экстремальных явлений в космическом пространстве, как кратковременные повышения на несколько порядков притока космической пыли в атмосферу Земли, увеличение частоты ударов микрометеоритов по космическим аппаратам, усиление грозовой активности, выпадение осадков и пр. Такой рой, по-видимому, образуется в результате полной или частичной дезинтеграции родительского тела и

представляет собой совокупность выброшенных из него в недалеком прошлом (6200 лет) пылевых частиц. В дальнейшем такой рой мы будем называть новым образованием.

Проведя анализ наблюдений 3000 метеорных потоков, полученных за 150 лет (с 30-х гг. XIX в. до 80-х гг. XX в.), И. С. Шестака [Шестака, 1990] пришел к выводу о том, что исчезновение метеорных потоков и появление новых может быть следствием эволюции орбит порождающих их метеороидных роев, происходящей под действием различных сил и создающей неблагоприятные условия для приближения этих роев к Земле и их наблюдений. «Исчезнувшие» рои могут существовать в Солнечной системе и через несколько тысячелетий вновь могут подойти к Земле, образуя новые метеорные потоки. Вообще же процесс исчезновения метеороидных роев не исключается, но для подтверждения его требуется значительно больший интервал времени наблюдений.

Из особенностей наблюдаемых новых образований, носящих проблемный характер и требующих точных количественных объяснений, прежде всего надо выделить значительную дисперсию орбитальных элементов частиц в метеорных потоках, т. е. рассеяние орбит метеороидов в потоках. Эта проблема — одна из центральных в метеорной астрономии. Качественное объяснение этого явления было дано Б. Ю. Левиным [Левин, 1956]. Он выделил 4 основных фактора, под действием которых происходят эволюция и постепенное рассеяние каждого метеороидного роя:

1) начальные скорости выброса частиц из родительского тела, создающие первоначальную дисперсию их орбит и, в частности, периодов обращения;

2) различие действия лучевого давления Солнца на частицы разных размеров, также способствующее первоначальной дисперсии их орбит (действие факторов 1 и 2 приводит к растягиванию роя в замкнутое кольцо);

3) планетные возмущения, по-разному действующие на разные части роя и приводящие к его утолщению;

4) эффект Пойнтинга — Робертсона, приводящий к весьма медленному расширению роя в плоскости его орбиты.

По мнению Б. Ю. Левина (применительно к кометам), большое многообразие структурных форм метеорных роев возникает в результате резких изменений кометных орбит вследствие их сближений с планетами, в первую очередь — с Юпитером.

При этом некоторый участок роя на прежней орбите, примыкавший к комете, обязательно переходит вместе с ней на новую орбиту. В зависимости от длительности пребывания кометы на старой орбите, скорости ее распада, размеров прежней орбиты и наличия сближений с орбитами планет перешедший на новую орбиту участок роя может иметь весьма различные структуру и плотность.

В дальнейшем исследователи добавляли некоторые уточняющие эффекты:

5) эффект Ярковского — Радзиевского (подробно об этом эффекте см. в главе 3). Он обусловлен анизотропностью инфракрасного излучения вращающимся сферическим телом. Вследствие этого, различие радиации, излученной двумя полусферами такого тела, вызывает появление добавочной силы.

Н. В. Куликова впервые получила [Катасев, Куликова, 1972] количественные оценки влияния эффекта Ярковского — Радзиевского на эволюцию метеороидных роев. Было показано, что на гелиоцентрических расстояниях свыше 1 а.е. для частиц сантиметрового размера и менее этот эффект играет малую роль в эволюции их орбит. Роль эффекта увеличивается с приближением частицы к Солнцу. Действие эффекта Ярковского — Радзиевского на движение частицы сравнимо с действием эффекта Пойнтинга — Робертсона на расстояниях от Солнца, меньших 0,01 а.е.;

6) Ф. Уиппл [Whipple, 1963] рассмотрел разрушение метеорных тел под действием космической эрозии и показал, что частицы кометного происхождения могут существовать, не подвергаясь эрозии, в течение интервала времени t = ·4,3·104 лет;

7) Ф. Уиппл [Whipple, 1968] и Дж. Дохнани [Dohnanyi, 1971] исследовали

вопрос о роли взаимных столкновений. Метеорные тела, принадлежащие роям, вследствие столкновений друг с другом и со спорадическими частицами дробятся и рассеиваются в пространстве. Среднее время жизни частицы до момента столкновения того же порядка, что и время, в течение которого частица разрушается под действием космической эрозии;

8) Ю. В. Обрубов [Обрубов, 1982], используя теоретические результаты В. Хюбнера [Huebner, 1970], А. А. Дмитриевского [Дмитриевский, 1974] и Л. Кресака [Kresak, 1976], количественно оценил изменения масс пылевых частиц под действием эффектов распыления протонами солнечного ветра, эрозии при столкновениях с микрометеороидами спорадического фона и испарения на интервалах времени порядка нескольких тысяч лет для роев Геминиды, Квадрантиды, -Аквариды и Ориониды. Он сделал вывод, что влиянием вышеуказанных эффектов на изменение массы метеороидов, порождающих метеоры ярче 6m, можно пренебречь;

9) Ф. Уиппл [Whipple, 1967] и Е. Н. Поляхова [Поляхова, 1970] исследовали влияние давления протонов солнечного ветра на движение пылевых частиц и установили, что оно на несколько порядков меньше влияния прямого давления света;

10) А. А. Дмитриевский [Дмитриевский, 1974] исследовал силы, обусловленные взаимодействием электрически заряженного метеорного тела с крупномасштабными электрическими и магнитными полями, и обнаружил, что для частиц, размер которых больше 0,05 см, доминирующим фактором является эффект Пойнтинга — Робертсона. Преобладание вышеупомянутых эффектов над эффектом Пойнтинга — Робертсона имеет место лишь для частиц, размер которых меньше 5 микрон;

11) дополняя перечень эволюционных, рассеивающих рои эффектов, следует отметить практически неизученный эффект изменения орбиты ледяного ядра кометы под действием реактивной отдачи сублимирующих с поверхности молекул. На этот фактор сравнительно недавно обратил внимание В. Н. Лебединец [Лебединец и др., 1990].

Имеется еще несколько интересных особенностей наблюдаемых метеорных образований: симметричные относительно эклиптики потоки-близнецы, группы потоков со сходными орбитами, потоки метеоритов и ассоциации метеорных потоков, комет и метеоритов. Большинство исследователей полагает, что в основном метеорные тела в рое имеют более крупные размеры, нежели тела спорадического фона. Точный закон распределения метеорных тел по массе в рое неизвестен. Однако общепринято, что вполне удовлетворительно такое распределение описывается степенным законом, связывающим количество метеорных тел N с величиной их массы m:

где S — параметр, который подбирается для каждого потока.

Трудность применения этого закона заключается в неопределенности показателя S. Этот параметр для каждого конкретного роя уточняется при наблюдении соответствующего потока. Однако, соглашаясь, что параметр S для роев меньше, чем для спорадических метеоров, исследователи получают не всегда одинаковое изменение этого параметра во времени. Считается, что это различие обусловливается неоднородной структурой роя на разных участках его орбиты. Так, для потока Персеиды был получен весьма широкий спектр значений параметра S, различных у разных авторов и для разных участков потока. Для частиц в диапазоне масс 10– 3–10– 5 г получено S = 1,78 [Hughes, 1973], по данным [Бибарсов, Рубцова, 1970] S = 1,66 и S = 1,9 для разных участков роя, по этим же данным S = 1,71 + 0,07 при = 138,92°, а по [Hughes, 1973] для 288 визуальных метеоров в интервале блеска от +1m до -5m получено S = 1,56 + 0,06. Наблюдается также резкое уменьшение параметра S за одни сутки от 2,4 до 1,44. При этом на внешней части роя отмечается скопление мелких частиц. Оказывается, что величина параметра S минимальна, когда Земля проходит центральную часть роя Персеиды (S = 1,54–1,6). В настоящее время с использованием современных методов обработки наблюдений значение параметра S все более уточняется.

Поделиться с друзьями: