Чтение онлайн

ЖАНРЫ

Астрономы наблюдают
Шрифт:

Мы живем в мире волн. Любое тело, будь то книга, ваше тело или звезда, излучает энергию в форме электромагнитных волн. Человеческий глаз чувствителен далеко не ко всем из них. Лишь ничтожная доля электромагнитных волн, попадая на сетчатку глаза, вызывает ощущение света. Но и этой доли оказывается достаточно, чтобы наполнить земной шар сиянием солнечного света и гаммой всевозможных красок, Быть может, наша ограниченность в восприятии электромагнитных волн есть благодетельная забота о нас самой природы. Ведь если бы человек воспринимал все излучения, существующие в природе, не был ли бы он подавлен их бесконечным многообразием?

Как бы там ни было, но человеческому

глазу доступны лишь те электромагнитные волны, длина которых заключена в пределах от 400 до 760 миллимикрон. Разлагая трехгранной стеклянной призмой белый солнечный луч на составные части, мы получаем спектр — радужную полоску, в которой представлены все цвета, доступные глазу.

Хорошо известно, что по обе стороны видимого спектра располагаются области невидимых излучений. Таковы ультрафиолетовые лучи с длиной волны меньше 400 миллимикрон. Они обнаруживают свое существование по-разному. В жаркий солнечный день некоторые из них вызывают загар на нашей коже. Те же лучи сильно воздействуют на эмульсию обычных фотопластинок, оставляя на ней хорошо видимые следы. К ультрафиолетовым лучам примыкают рентгеновы лучи, широко используемые в медицине. Наиболее коротковолновые из известных излучений, так называемые гамма-лучи, выделяются при радиоактивном распаде. Их энергия весьма велика и они очень опасны — мощное гамма-излучение может породить мучительные явления лучевой болезни.

За красной границей видимого спектра лежит область невидимых инфракрасных лучей. Некоторые из них, с длиной волны значительно меньше одного сантиметра, способны заметно нагреть наше тело, и потому их иногда называют тепловыми лучами. Когда вы подносите руку к раскаленному утюгу и на каком-то расстоянии чувствуете его тепло, в этот момент ваша рука подвергается действию именно этих инфракрасных, «тепловых» лучей.

За инфракрасными лучами следуют радиоволны. Их длины измеряются миллиметрами, сантиметрами, дециметрами и метрами.

Несмотря на количественные и качественные различия, перечисленные излучения — от гамма-лучей до радиоволн — обладают одним общим свойством: все они имеют общую природу, являясь электромагнитными волнами.

Благодаря общности природы всем электромагнитным волнам свойственны, например, такие процессы, как одинаковая скорость распространения, отражение и преломление, поглощение и рассеяние. Радиоволны, как и лучи видимого света, могут складываться друг с другом, то есть, говоря языком физики, интерферировать. В некоторых случаях можно наблюдать дифракцию радиоволн, или «огибание» ими предметов, размеры которых сравнимы с их длиной.

Замечательно, что всякое нагретое тело излучает электромагнитные волны всевозможных длин. Отложив по горизонтальной оси графика длины волн, а по вертикальной оси величины, характеризующие интенсивность излучения, то есть излучаемой энергии для дайной длины волны, можно получить, как говорят физики, распределение энергии по спектру данного тела.

Для Солнца максимум кривой распределения энергии по спектру лежит в области желтых лучей. И действительно, удаленное от Земли на расстояние звезд наше Солнце казалось бы желтенькой звездочкой. Желтый цвет Солнца обычно не заметен только из-за ослепительной яркости дневного светила.

В области инфракрасных лучей кривая распределения энергии по спектру постепенно приближается к горизонтальной оси, теоретически говоря, нигде ее не пересекая. Это значит, что всякое нагретое тело в какой-то степени излучает и радиоволны. Договоримся излучение радиоволн, вызванное нагретостью тела, называть тепловым

радиоизлучением.

Как видите, радиоволны далеко не всегда имеют Искусственное происхождение. Скорее наоборот — естественных радиостанций несравненно больше, чем тех, которые созданы руками человека. Строго говоря, любое тело может рассматриваться как естественная радиостанция, пусть ничтожной мощности.

Вам, конечно, случалось наблюдать досадные помехи на экране телевизора. Где-то рядом проезжает троллейбус или автобус, и сразу изображение портится — по экрану бегут какие-то белые полоски. И в этом случае виновник — естественные радиоволны. Их породили искровые разряды на концах токоприемников троллейбуса или в щетках генератора автомашины. «Непрошенные» радиоволны вмешались в передачу, испортили настройку телевизора и вызвали помехи.

Каждая электрическая искра — это естественная «радиостанция».

Электрические разряды всегда порождают радиоволны. Как известно, первый радиоприемник А. С. Попова был «грозоотметчиком» — он улавливал радиоволны, порождаемые молнией.

Есть, однако, существенное отличие радиоволн, излучаемых электрической искрой и радиоизлучением, например, нагретого утюга.

Радиоизлучение искры вызвано не только нагретостью раскаленного воздуха, но и другими, более сложными процессами. В таких случаях говорят о нетепловом радиоизлучении. Как мы увидим в дальнейшем, нетепловое радиоизлучение может возникнуть, например, при торможении сверхбыстрых электронов под действием магнитных сил.

Казалось бы, обилие всевозможных радиоизлучений позволяет изучать Вселенную в любом диапазоне радиоволн. Но, к сожалению, этому препятствует атмосфера.

Прозрачна ли атмосфера?

Трудно поверить, что воздух почти непрозрачен, что до наших глаз доходит лишь ничтожная доля всех излучений, существующих в природе.

Взгляните на рисунок 38. Он иллюстрирует прозрачность земной атмосферы для электромагнитных волн различных длин. Гладкая горизонтальная часть кривой, совпадающая с горизонтальной осью графика, отмечает те излучения, для которых земная атмосфера совершенно непрозрачна. Два «горба» кривой, один узкий, другой более широкий, соответствуют двум «окнам прозрачности» в земной атмосфере.

Левое из них лежит в основном в области видимых лучей — от ультрафиолетовых до инфракрасных. К сожалению, атмосфера Земли совершенно непрозрачна для лучей, длина волны которых меньше 290 миллимикрон. Между тем в далеких ультрафиолетовых областях спектра расположены спектральные линии многих химических элементов. Мы их не видим, и поэтому наши сведения о химическом составе небесных тел далеко не полны.

Рис. 38. Прозрачность земной атмосферы.

В последнее время астрономы пытаются вырваться за границы воздушной оболочки Земли и увидеть космос, так сказать, в «чистом виде». И это им удается. Высотные ракеты и воздушные шары выносят спектрографы и другие приборы в верхние, весьма разреженные слои атмосферы, и там автоматически фотографируется спектр Солнца.

Начато изучение этим способом и других астрономических объектов.

Другой край «оптического окна» атмосферы упирается в область спектра с длиной волны около микрона. Инфракрасные лучи с большей длиной волны сильно поглощаются главным образом водяными парами земной атмосферы.

Поделиться с друзьями: