Астрономы наблюдают
Шрифт:
Примеру Дольфуса последовали американские ученые. Астроном М. Шварцшильд в 1957 году начал серию запусков стратостатов с астрономическими приборами, но без человека на борту (рис. 46). Его «Стратоскоп-2» взлетел на высоту 24 км и поднял в стратосферу управляемый по радио 36 дюймовый телескоп, равный по диаметру знаменитому Ликскому рефрактору! Кстати сказать, на такую же высоту в гондоле стратостата поднялись в 1961 году и два американских исследователя М. Росс и В. Празер.
На высоте в 34 км практически полностью используется разрешающая сила телескопов и становится доступным
Результаты не замедлили сказаться. На тысячах снимков солнечной поверхности необычайно отчетливо и в крупном масштабе виднелись гранулы — вершины бьющих наружу конвективных струй солнечной атмосферы. Отлично различима на снимках тонкая структура солнечных пятен. Со стратостатов были также получены снимки Юпитера, спектры Луны и некоторых планет, звезд и галактик. В инфракрасной части спектра звезды Миры Кита и других холодных звезд удалось заметить полосы воды.
«Стратоскопы» Шварцшильда, наполненные газом, достигали в высоту 198 м (как 65-этажный небоскреб!). После выполнения программы по радиокоманде с Земли гондола с приборами отделялась от стратостата и на парашютах опускалась к исследователям.
Французские и швейцарские астрономы с помощью стратостатов впервые получили «ультрафиолетовые» спектры Солнца и сотен звезд. В 1960 году американский стратостат «Короноскоп» доставил на высоту 26 км коронограф и другие приборы для изучения Солнца. То, что раньше удавалось увидеть лишь в моменты полных солнечных затмений, теперь стало доступным изучению в любой день.
Первая советская стратосферная обсерватория отправилась в полет в ноябре 1966 года. Вес ее научной аппаратуры достигал 7,6 тонны! Среди этих приборов был и рефлектор с поперечником 1 м. После этого был произведен еще ряд запусков, итоги которых оказались весьма ценными для науки. На поверхности Солнца открыта неизвестная ранее тонкая структура — множество «пятен», диаметром не более 300 км, существование которых объясняет ряд аномалий в магнитных полях Солнца. Спектрограммы Солнца показали, что дейтерия на Солнце практически нет.
Выявлены новые закономерности в образовании хромосферных вспышек — невообразимо мощных взрывов на Солнце. Организатором этих стратосферных исследований Солнца является директор Пулковской обсерватории член-корреспондент АН СССР В. А. Крат.
Запуски воздушных шаров (или баллонов) в стратосферу для астрономических исследований стали обычным делом. С 1972 года на высоты 30–35 км ежегодно запускаются сотни шаров. В этом изучении Вселенной с границ земной атмосферы баллонам помогают ракеты.
Началом «ракетной астрономии» можно считать тот день, когда в 1946 году группа американских исследователей во главе с Тауси установила спектрограф на одну из трофейных ракет «Фау-2» и отправила эту ракету в верхнюю стратосферу на высоту около 200 км. Здесь, в верхней точке траектории, господствовали условия, равноценные межпланетному пространству. Вся атмосфера практически оставалась внизу, а на черном звездном небе ослепительно ярко сияло Солнце. Вот почему запуски ракет ознаменовали начало заатмосферных наблюдений космоса.
Эти запуски давно уже стали
заурядными событиями в научной жизни ряда стран, в частности, и Советского Союза. Используются, разумеется, уже не трофейные, а специальные ракеты, оснащенные разнообразными приборами для фотографирования небесных тел и их спектров в невидимых глазом лучах. Особенно впечатляющи успехи «ракетной астрономии» в области «ультрафиолетовой» астрономии.Обсерватерии на орбитах
Исследование космоса с помощью высотных геофизических ракет имеет один существенный недостаток. Пребывание ракеты (а стало быть, и астрономических приборов) на максимальной высоте весьма кратковременно. Между тем в ряде случаев требуются наблюдения гораздо большей длительности. Отсюда и родилась идея о создании Орбитальных Астрономических Обсерваторий (ОАО).
Собственно, уже третий советский искусственный спутник Земли весом 1,3 т нес аппаратуру для исследования микрометеоритов и космических лучей, а потому его можно считать предшественником будущих орбитальных астрономических обсерваторий. Тем более летающими обсерваториями можно было бы считать такие советские спутники, как 17-тонный «Протон-4». Однако в дальнейшем под ОАО мы будем понимать спутники, предназначенные только для астрономических исследований. С этой точки зрения первыми специализированными ОАО были американские спутники «ОСО-1» и «ОСО-2», выведенные на орбиты в 1964 и 1965 гг. Эти Орбитальные Солнечные Обсерватории (ОСО) получили новые данные о коротковолновом солнечном излучении, солнечных вспышках и космических радиоисточниках. Вес их аппаратуры не превышал 100 кг.
Американские ОСО запускаются на почти круговые орбиты высотой около 500 км. Основание ОСО имеет форму колеса и состоит из нескольких отсеков, несущих различную аппаратуру. Главная трудность в создании ОАО — обеспечение нужной ориентации спутника и сохранение этой ориентации достаточно продолжительное время. В американских ОСО устойчивость ориентации обеспечивается вращением колеса, основы станции, с угловой скоростью около 30 оборотов в минуту. Кроме спектрографов и других приборов на ОСО имеются специальные самописцы, предназначенные для хранения информации.
В настоящее время ОАО, запускаемые в США, снабжаются оптическими и радиотелескопами, а также аппаратурой для изучения гамма-лучей и рентгеновского излучения, поступающих от космических источников. Телескопы ОАО способны эффективно изучать планеты, звезды и галактики. Насколько точна система стабилизации ОАО, можно судить по следующему примеру. Американская ОАО «Коперник» весом 2,2 т, запущенная в 1972 году, способна в течение часа сохранять нужное направление с точностью до 0,1 секунды дуги! Под таким углом виден футбольный мяч с расстояния в 650 км.
В будущем и эта точность повысится. В США в 80-х гг. текущего столетия проектируется запуск орбитального самолета, на борту которого будет находиться рефлектор диаметром 4 м. Точность стабилизации при этом составит 0,005 секунды дуги. Заметим, что если этот проект будет осуществлен, в орбитальный 4-метровый рефлектор удастся, вероятно, рассмотреть планеты у ближайших звезд!
Крупные размеры уже сегодня имеют орбитальные радиотелескопы. Например, ОАО «Эксплорер-38» имеет четыре антенны, раздвигающиеся в длину до 220 м.