Бегство от удивлений
Шрифт:
Разве это не чудо?
Нетерпеливым читателям, верно, хочется спросить: а в самом деле, почему это так? Почему Земля через пустоту тянет к себе камни и все остальные тела?
Получить ответ сейчас — значит, сразу, без особых усилий, «убежать от удивления». Но столь поспешное бегство не удастся. Простой с виду вопрос на деле оборачивается труднейшей и сложнейшей научной проблемой.
Чтобы понять причины чуда, нужно сперва изучить его подробности, точно разузнать, как оно происходит. Без ответа на вопрос «как» не узнаешь и почему именно так, а не иначе устроена и действует природа.
Уход от всеобъемлющего почему может показаться уступкой, жертвой незнанию. Но в действительности наоборот — именно здесь
Итак, не почему это так, а прежде всего как это так?
Сначала — как падают тела?
Вот задача.
Некий чудак, глазея с моста в реку, уронил кепку, решил догнать ее в воздухе и для этого сам нарочно упал с моста. Удался ли ему замысел? Сопротивление воздуха не учитывать.
Вариант задачи. Что быстрее свалится со стола — дверной ключ или спичка? Какая из двух сосулек, вместе оторвавшихся от карниза, скорее достигнет тротуара — большая или маленькая?
Второй (более острый) вариант. Что раньше упадет на землю, сорвавшись одновременно с одинаковой высоты (при условии отсутствия помех) —тополиная пушинка или пушечное ядро?
Все эти варианты составили маленькую анкету, которую я предложил людям вполне культурным — пятерым школьникам-восьмиклассникам и трем взрослым, журналистам. Получился легонький тест на физический кругозор.
Трое из опрошенных (в их числе два школьника) ответили правильно. Остальные же, те, кто начисто забыл школьную физику, уверенно заявили: чудак догонит кепку, большая сосулька обгонит маленькую, так же как ядро — пушинку. Потому что, говорили они, тяжелое должно падать быстрее легкого, так как сильнее притягивается Землей.
Хорошо, когда культура человека сочетается с минимумом знаний. Увы, так бывает не всегда, что и засвидетельствовал мой тест.
В действительности гонка любых тел, падающих без помех, — гонка без победителя. Уроните пушинку и ядро в безвоздушном пространстве, и вы увидите, что они полетят вниз рядышком, ни на йоту не опережая друг друга. Это касается любых тел, лишь бы не было помех падению. И это — тоже чудо. Великое чудо природы. Потому что просто невозможно поверить, не убедившись воочию, что пушинка и ядро падают одинаково быстро. Житейский опыт этого знания не дает. Больше того, он противоречит этому знанию. Нужен опыт научный — физический эксперимент. Впервые его провел, по свидетельству многих историков науки, великий итальянец Галилео Галилей.
Наклонная башня в итальянском городе Пизе сейчас доставляет массу хлопот. Она наклоняется все больше и грозит вообще упасть. Итальянцы, кажется, всерьез забеспокоились и решили укрепить это уникальное архитектурное сооружение. Пока, правда, лишь разрабатываются проекты. Но надо надеяться, Пизанская башня будет спасена и сохранена.
Почет башне — по заслугам. Она не только памятник зодчества. Она была чуть ли не самым первым в мире физическим прибором. И изучалось на ней то самое явление, которое ныне угрожает ее сохранности, — падение.
Четыре века назад молодой профессор Пизанского университета Галилей (в ту пору еще не снискавший славы всемирно известного физика, даже не сделавший еще окончательного выбора между медициной, живописью и философией) бросал с этой башни пушечные ядра и мушкетные пули. И смотрел, как они падают.
Пули и ядра падали одинаково быстро, и Галилей восхищенно удивлялся этому. Удивлялся потому, что с детских лет его учили догме: тяжелое падает быстрее легкого, и тем быстрее, чем оно тяжелее. В старых книгах это утверждение выдавалось за непререкаемую истину, ибо так заявил в свое время величайший из мыслителей древности Аристотель.
Галилей осмелился кощунственно проверить и отвергнуть это мнение, призвав в свидетели природу. Так он совершил первое великое дело своей жизни, положил начало экспериментальной физике.
Громкие слова эти сказаны не напрасно. Наблюдение и вывод Галилея были научным подвигом, блестящим прозрением человеческого ума, переломом в научном взгляде на мир.
Тогда не принято было апеллировать к природе в решении научных задач. Считалось, что все на свете объяснимо одними лишь рассуждениями. А потому важные коллеги молодого профессора,
собравшиеся внизу, у подножия башни, не желали верить своим глазам, осыпали Галилея суровыми упреками, не хотели слушать его слов. И они были отнюдь не глупцами. Нет, они были людьми просвещенными, знали древние языки, умели толковать античные тексты, разбирались в математике, находили удовольствие в философских диспутах, где изощрялись в красноречии и формальной логике. Но к естественности, к живому физическому явлению они питали надменное равнодушие.Такое уж было время — не родилась еще настоящая физика. Исследовательский ум, еще юный, незрелый, был тогда, пожалуй, слишком хвастлив. Он упивался собой и переоценивал себя. Он стыдился задавать вопросы неразумной стихии. Опыт представлялся ему занятием низким, даже жульническим. Прибегнуть к опыту значило как бы расписаться в собственной умственной слабости.
Галилей тоже был сыном своей эпохи. И он не чурался витиеватой мудрости голых рассуждений. И он упражнялся в богословии. И чтил Аристотеля, ревностно его штудировал. И сперва послушно шел по его стопам. А потом сумел в нем усомниться.
На такое, правда, кое-кто решался и до Галилея.
Но именно Галилей первым в истории науки довел еретические антиаристотелевские раздумья о падающих телах до конкретного эксперимента. Первым сознательно решился задать вопрос природе о свойствах падения.
На брюзжание пизанских коллег Галилей не уставал отвечать. По-всякому. Иногда — во вкусе оппонентов (в духе модных в те времена схоластических споров) и даже язвительными стихами. Но главное — он продолжал свои опыты. Вновь и вновь лазал на башню, старался узнать, зависит ли быстрота падения не только от веса, но и от материала, от формы тел. Этой проблеме была посвящена серия экспериментов. Круглые ядра, продолговатые пули, железные, медные — все летело с башни вниз. Экспериментировать было трудно: слишком скоро брошенные тела оказывались на земле.
Зато у себя дома в рабочем кабинете, который стал первой на нашей планете физической лабораторией, Галилей ухитрился замедлить падение. Оно стало доступно и взгляду и тщательному, неторопливому изучению.
Ради этого Галилей построил длинный (в двенадцать локтей) наклонный желоб. Изнутри обил его гладкой кожей. И спускал по нему отшлифованные шары из железа, бронзы, кости.
Делал, например, так.
К шару, находившемуся в желобе, прикреплял нитку. Перекидывал ее через блок, а к другому ее концу подвешивал гирю, которая могла опускаться или подниматься отвесно. Гирю тянула вниз ее собственная тяжесть, а вверх, через нить, — шарик из наклонного желоба. В результате шарик и гиря двигались так, как хотел экспериментатор — вверх или вниз, быстро или медленно, смотря по наклону желоба, весу шарика и весу гири. Шарик и гиря могли, таким образом, перемещаться под действием силы тяжести. А это и было падение. Правда, не свободное, искусственно замедленное.
Сперва Галилей отыскал закон устойчивого состояния этой системы: вес гири, помноженный на высоту поднятого конца наклонного желоба, должен быть равен весу шарика, помноженному на длину желоба. Так появилось условие равновесия системы — галилеевский закон наклонной плоскости.
О падении и его секретах еще ничего не было сказано.
Неподвижность изучать нетрудно: она постоянна во времени. Проходят секунды, минуты, часы — ничто не меняется. Весы да линейки — вот и все, что нужно для измерений [1]
1
Потому-то с глубокой древности начала развиваться статика— область физики, занимающаяся всякого рода неподвижностями: уравновешенными весами, блоками, рычагами. Все это вещи нужные, понимать их важно и полезно, недаром им посвятил много времени прославленный грек Архимед. Даже в неподвижности он подметил многое, что необходимо изобретателям всевозможных машин. Тем не менее, если быть придирчивым, это еще не была настоящая физика. Это была только подготовка к ней. А подлинная физика началась с изучения движений.