Чтение онлайн

ЖАНРЫ

Беспроводная сеть своими руками

Ватаманюк Александр

Шрифт:

Метод DSSS

Смысл метода расширения спектра прямой псевдослучайной последовательностью (DSSS) заключается в приведении узкополосного спектра сигнала к его широкополосному представлению, что позволяет увеличить устойчивость передаваемых данных к помехам.

При использовании метода широкополосной модуляции с прямым расширением спектра диапазон 2400–2483,5 МГц делится на 14 перекрывающихся или три неперекрывающихся канала с промежутком в 25 МГц. Фактически это означает, что разное оборудование может параллельно использовать три канала, при этом не мешая друг другу работать.

Для пересылки данных используется всего один канал. Чтобы повысить качество передачи

и снизить потребляемую при этом энергию[3] (за счет снижения мощности передаваемого сигнала), используется последовательность Баркера, которая характеризуется достаточно большой избыточностью. Избыточность кода позволяет избежать повторной передачи данных, даже если пакет частично поврежден.

Метод FHSS

При использовании метода широкополосной модуляции со скачкообразной перестройкой (FHSS) частотный диапазон 2400–2483,5 МГц делится на 79 каналов шириной по 1 МГц. Данные передаются последовательно по разным каналам, создавая некоторую схему переключения между каналами. Всего существует 22 такие схемы, причем схему переключения согласовывают отправитель и получатель данных. Схемы переключения разработаны таким образом, что шанс использования одного канала разными отправителями минимален.

Переключение между каналами происходит очень часто, что обусловлено малой шириной канала (1 МГц). Поэтому метод FHSS в своей работе использует весь доступный диапазон частот, а значит, и все каналы.

Метод OFDM

Метод ортогонального частотного мультиплексирования (OFDM) является одним из «продвинутых» и скоростных методов передачи данных. В отличие от методов DSSS и FHSS, с его помощью можно параллельно передавать данные по нескольким частотам радиодиапазона. При этом информация разбиваются на части, что позволяет не только увеличить скорость, но и улучшить качество передачи.

Данный метод модуляции сигнала может работать в двух диапазонах – 2,4 и 5 ГГц.

Метод PBCC

Метод двоичного пакетного свёрточного кодирования (BCC) используется при скорости передачи данных 5,5 и 11 Мбит/с. Этот же метод, только слегка модифицированный, используется и при скорости передачи данных 22 Мбит/с.

Принцип PBCC основан на том, что каждому биту информации, который нужно передать, назначаются соответствующие два выходных бита (так называемый дибит), созданные в результате преобразований с помощью логической функции XOR и нескольких запоминающих ячеек.[4] Поэтому этот метод называется свёрточным кодированием со скоростью 1/2, а сам механизм кодирования – свёрточным кодером.

Примечание.

При скорости входных битов N бит/с скорость выходной последовательности (после свёрточного кодера) составляет 2N бит/с. Отсюда и понятие скорости – один к двум (1/2).

Использование свёрточного кодера позволяет добиться избыточности кода, что, в свою очередь, повышает надежность приема данных.

Чтобы отправить готовый дибит, используется фазовая модуляция сигнала. При этом в зависимости от скорости передачи применяется определенный метод модуляции – двоичная фазовая модуляция (BPSK, скорость передачи – 5,5 Мбит/с) или квадратичная фазовая модуляция (QPSK, скорость передачи – 11 Мбит/с).

Смысл модуляции заключается в том, чтобы ужать выходной дибит до одного символа, не теряя при этом избыточность кода. В результате скорость поступления данных будет соответствовать скорости их передачи, но при этом они будут обладать сформированной избыточностью кода и более высокой помехозащищенностью.

Метод PВCC также предусматривает работу со скоростью передачи данных 22 и 33 Мбит/с. При этом используется пунктурный кодер и другая фазовая модуляция.

Для

примера рассмотрим скорость передачи данных 22 Мбит/с (вдвое выше скорости 11 Мбит/с). В этом случае согласно алгоритму своей работы свёрточный кодер переводит каждые два входящих бита в четыре исходящих. Это приводит к слишком большой избыточности кода, что не всегда приемлемо при определенном уровне помех. Поэтому, чтобы уменьшить лишнюю избыточность, используется пунктурный кодер, задача которого – удаление лишнего бита в группе из четырех битов, выходящих из свёрточного кодера.

 

Таким образом, каждым двум входящим битам соответствуют три бита, обладающие достаточной избыточностью. Эти три бита проходят через модернизированную фазовую модуляцию (восьмипозиционная фазовая модуляция 8-PSK), которая упаковывает их в один символ, готовый к передаче.

Технология кодирования Баркера

Чтобы повысить помехоустойчивость передаваемого сигнала, то есть увеличить вероятность безошибочного распознавания сигнала на приемной стороне в условиях шума, можно воспользоваться методом перехода к широкополосному сигналу, добавляя в исходный сигнал избыточность. Для этого в каждый передаваемый информационный бит «встраивают» определенный код, состоящий из последовательности так называемых чипов.

Итак, после подбора специальных сочетаний последовательности чипов и превращения исходящего сигнала практически в нераспознаваемый шум при приеме сигнал умножается на специальную корреляционную функцию (код Баркера). В результате этого все шумы становятся в 11 раз слабее, так как остается только полезная часть сигнала – непосредственно данные.

Казалось бы, что можно сделать с сигналом, который состоит из сплошного шума? Оказывается, применив код Баркера, можно достичь гарантированного качества доставки данных.

Технология CCK

Технология шифрования с использованием комплементарных кодов (CCK) применяется для сжатия битов данных, что позволяет достичь повышения скорости передачи информации.

Изначально эта технология использовалась в стандарте IEEE 802.11b, что позволило достичь скорости передачи данных 5,5 и 11 Мбит/с. С помощью CCK можно кодировать несколько битов в один символ. В частности, при скорости передачи данных 5,5 Мбит/с 1 символ равняется четырем битам, а при скорости 11 Мбит/с один символ равен 8 битам данных.

Данный способ кодирования можно описать достаточно сложными системами – математическими уравнениями, в основе которых лежат комплементарные восьмиразрядные комплексные последовательности. Коснемся этой темы лишь поверхностно.

Технология CCK-OFDM

Технология гибридного кодирования CCK-OFDM используется при работе оборудования как с обязательными, так и с возможными скоростями передачи данных.

Как ранее упоминалось, при передаче информации применяются пакеты данных, имеющих специальную структуру. Эта структура содержит, как минимум, служебный заголовок. При использовании гибридного кодирования CCK-OFDM служебный заголовок пакета строится с помощью CCK-кодирования, а сами данные – с помощью OFDM-кодирования.

Технология QAM

Технология квадратурной амплитудной модуляции (QAM) используется при высоких скоростях передачи данных (начиная со скорости 24 Мбит/с). Ее суть заключается в том, что скорость передачи данных повышается за счет изменения фазы сигнала и изменения его амплитуды. При этом используются модуляции 16-QAM и 64-QAM, которые позволяют кодировать 4 бита в одном символе при 16 разных состояниях сигнала (в первом случае) и 6 битов в одном символе при 64 разных состояниях сигнала (во втором).

Поделиться с друзьями: