Чтение онлайн

ЖАНРЫ

Шрифт:

Рамзай с присущим ему юмором сказал как-то: — Поиски гелия напоминают мне поиски очков, которые старый профессор ищет на ковре, на столе, под газетами и находит, наконец, у себя на носу.

Так люди впервые услышали о гелии, показания которого пролили впоследствии свет на тайну оловянной чумы.

Двуликий газ

Гелий оказался газом без запаха и цвета, неспособным соединяться ни с каким другим элементом; самым легким элементом из семейства инертных газов. Казалось, это скромный труженик с покладистым характером; им наполняли дирижабли, применяли его и в металлургии и в медицине.

Но, на первый взгляд ничем особенным не примечательный, газ имел и второе лицо.

Странности начались тотчас, как гелий охладили. Ученые привыкли к тому, что в таких случаях газы густеют и уплотняются, превращаясь сначала в жидкость, а потом замерзая в твердое кристаллическое тело.

Было хорошо известно, что кислород сжижается при минус 183 градусах Цельсия, азот при минус 196 градусах, водород около минус 253 градусов. Но гелий повел себя совершенно иначе.

Многие пробовали его охлаждать. Была уже пройдена «точка кислорода», и «точка азота», и «точка водорода», а гелий не собирался сжижаться. Он упорно оставался газом.

Только в 1908 году голландскому физику Г. Каммерлинг-Оннесу удалось сделать, казалось, невероятное: он заставил гелий превратиться в жидкость. И случилось это при температуре минус 269 градусов Цельсия! Такой низкой температуры человек не получал еще никогда.

При такой температуре все другие газы становились твердыми, как кусок льда. А гелий превращался в прозрачную жидкость, напоминающую газированную воду.

Но эта безобидная на вид жидкость была в семьдесят пять раз холоднее ледяной воды!

Кристаллизоваться же гелий не хотел даже вблизи абсолютного нуля — при минус 273 градусах Цельсия, самой низкой температуре, которая только возможна в природе. Этим он бросал вызов всей классической физике, провозглашавшей, что всякое движение при абсолютном нуле прекращается. Все должно замерзнуть! А поскольку гелий оставался жидким, значит его атомы все-таки двигались, они не подчинялись закону «вечного покоя».

Несмотря на то, что в 1926 году голландец В. Кеезом справился с гелием и заставил его затвердеть, призвав на помощь морозу высокое давление, зерно сомнения было посеяно. Гелий стал одним из свидетелей против классической физики. С помощью известных законов физика не могла объяснить его поведения.

Ученые еще не перестали удивляться странному поведению благородного газа, как новая сенсация завладела их вниманием. Каммерлинг-Оннес, заставив гелий обратиться в жидкость, решил полюбопытствовать, что будет в таком холоде, например, с ртутью. Каково же было его удивление, когда он обнаружил, что в таком климате, который создается в ванне с жидким гелием, электрическое сопротивление ртути исчезло! Легко представить себе, как он подозрительно поглядывал на прибор, регистрирующий эту величину; как, проверяя его работу, удостоверился, что прибор цел и невредим и все-таки продолжал констатировать исчезновение в ртути сопротивления электрическому току. А потом оказалось, что еще девятнадцать чистых металлов повели себя в области низких температур таким же неподобающим образом, нарушив покой ученых. Самое большое, что ученые тогда смогли сделать, — это дать явлению название «сверхпроводимость».

Вот к каким странным, не предусмотренным тогдашней наукой событиям привел желтый след гелия.

Белая ворона

И непонятные метаморфозы олова, и неблагородное поведение одного из благородных газов, и предательство девятнадцати металлов взбудоражили научную общественность. Что это: случайные, разрозненные явления, ничем между собой не связанные? Или это внешние проявления одной непонятной еще причины?

Все это противоречило основным, казалось бы, незыблемым принципам науки.

Ученые оказались в куда более затруднительном положении, чем малыши перед кубиками, никак не складывающимися в картинку. Им предстояло отдельные, разрозненные явления поставить на свои места, но, увы, образца-картинки у них не было.

Между тем опыты с гелием все больше проявляли темные стороны его характера. Выяснилось, что в условиях неслыханного холода жидкий гелий начинал в миллиард раз быстрее проводить тепло. Казалось, тепло в нем распространяется без всякого сопротивления (не промелькнула ли сейчас тень девятнадцати металлов, без всякого сопротивления проводящих электрический ток?).

Гелий становился в миллион раз более подвижным и менее вязким. Капнув жидкий гелий на гладкую охлажденную поверхность, исследователи в изумлении наблюдали, как быстро растекается он в тончайшую пленочку. Как будто не испытывает никакого сопротивления со стороны поверхности!

Если проделать такой же опыт с любой другой жидкостью, ничего подобного не увидишь. Капля как бы застынет, чуть располнев.

И даже это было еще не самым удивительным. Что, если бы вы увидели человека, бегущего вверх по отвесной стене? Это невозможно? Законы тяготения этого не допускают? Приблизительно то же подумали ученые, когда увидели, как жидкий гелий с необычайной быстротой ползет вверх по стенкам сосуда. Это невозможно, ужаснулись многие из них, а трение, а вязкость?! И еще более изумились, услышав мнение советского ученого Петра Леонидовича Капицы: вязкости у жидкого гелия вблизи абсолютного нуля нет вовсе. Это сверхтекучая жидкость.

Так впервые в 1938 году мир услышал удивительное слово «сверхтекучесть».

Вывод П.Л. Капицы был результатом долгих и кропотливых экспериментов, итогом многих раздумий. Почему так молниеносно распространяется тепло внутри жидкого гелия? Как и обычно, его переносит сама жидкость. Ее слои перемешиваются и менее теплые нагреваются от более теплых. Так происходит всегда во всех жидкостях. Но в жидком гелии это происходит молниеносно. Как же так, ведь слои всегда трутся друг о друга, а это должно мешать быстрому перемешиванию. А если вязкость не препятствует? Значит, ее нет!

И Капица подтверждает свою догадку блестящим экспериментом. Он пропускает жидкий гелий сквозь мельчайшие щели — капилляры, через которые обычная вязкая жидкость если и проходит, то ей нужно затратить на это многие миллиарды лет. А гелий, охлажденный до 2 градусов выше абсолютного нуля, просочился буквально на глазах, получив «диплом» первой в истории науки сверхтекучей жидкости.

Жидкость без вязкости! Это было одним из поразительных открытий нашего века. Как такая жидкость отнеслась бы к инородному телу, погруженному в нее? Оказала бы ему сопротивление или нет?

И экспериментатор спешит поставить такой опыт: он опускает в жидкий гелий качающийся маятник (паучок Капицы). Жидкость без трения, без вязкости не остановит его. Но что это? Совершается непонятное: маятник прекращает движение, останавливается... Жидкий гелий повел себя как самая обычная, тривиальная жидкость.

Есть от чего прийти в смятение! В одном случае (с капилляром) жидкий гелий не имеет вязкости, в другом (с маятником) — имеет. Все происходит так, как будто одновременно в нем заключены... две жидкости. Так оно и оказалось. Вот как описывает ни на что не похожее поведение жидкого гелия замечательный советский физик Лев Давидович Ландау: «...часть жидкости будет вести себя как нормальная вязкая жидкость, «цепляющаяся» при движении... Остальная же часть массы будет вести себя как не обладающая вязкостью сверхтекучая жидкость».

Поделиться с друзьями: