Чтение онлайн

ЖАНРЫ

Шрифт:

Но не все было благополучно в протонно-нейтронной модели. Изгнание электрона из ядра лишило его «электронного цемента», ранее связывавшего положительные заряды протонов. Что же теперь удерживает их в ядре вместе с нейтральными нейтронами, несмотря на взаимное отталкивание одноименных зарядов?

Были и другие подводные камни, например бета распад. С бета-распадом все давно было ясно. Нейтрино придало теории бета-распада характер полной достоверности. Но теперь бета-распад мог оказаться роковым для протонно-нейтронной модели ядра. Многолетний опыт показывал, что при распаде многих ядер из них вылетают электроны. Спрашивается, как может вылететь из ядра то, чего там нет?

Гейзенберг, спасая бета-распад и протонно-электронную модель ядра, отвел

последнее возражение новой гипотезой. Он предположил, что нейтрон в радиоактивных ядрах может превращаться в протон, электрон и нейтрино. Протон при этом остается в ядре, электрон и нейтрино вылетают, как и положено во время бета-распада.

Замечательным в этой гипотезе был новый подход к нейтрону. Эта вновь открытая элементарная частица объявлялась сложной, способной порождать другие элементарные частицы. Но при этом она сохраняла и свойства настоящей элементарной частицы. Ведь электрон, магнитные свойства которого в тысячу раз больше, чем у нейтрона, не может постоянно быть его' составной частью. Он не может просто входить в нейтрон как индивидуальная частица. Он должен рождаться из него при подходящих условиях.

Но новая гипотеза Гейзенберга не превратила протонно-нейтронную модель из гипотезы в теорию. Ведь оставался открытым вопрос о ядерном цементе. А кроме того, гипотеза, придумываемая для объяснения единичного факта — для спасения другой гипотезы, — всегда встречается с недоверием. Тем более что для ее обоснования нужно было еще объяснить, почему нейтрон остается устойчивым в ядрах, не испытывающих бета-распада, и почему никто не видел распада свободных нейтронов.

Так физики похоронили спорную гипотезу бетараспада и отложили в число сомнительных обе модели ядра. Ведь каждая из них приводила к непреодолимым трудностям. Пока теоретики рассуждали о таинственных свойствах ядра, экспериментаторы продолжали охоту за тайнами природы.

Рождение античастиц

Счастливый случай и наблюдательность позволили Андерсону обнаружить на фотопластинке, экспонированной во время опытов с космическими частицами, след, который могла оставить только частица, во всем тождественная электрону, но имеющая положительный заряд. Это действительно был положительный электрон — первая античастица, попавшаяся на глаза ученым. Его существование еще с 1928 года было предсказано Дираком, преобразовавшим волновое уравнение Шредингера в соответствии с требованиями теории относительности.

Позитрон в нашем мире не может жить долго. Он быстро соединяется со встречным электроном, превращаясь в квант электромагнитного поля.

Открытие позитрона не только подтвердило теорию Дирака и глубокую общность между электромагнитным полем и элементарными частицами, но и послужило косвенной поддержкой гипотезы Гейзенберга. Если электрон и позитрон могли превращаться в фотоны, то менее странной казалась возможность превращения нейтрона в протон и электрон.

Вскоре было обнаружено, что некоторые искусственные радиоактивные элементы распадаются с испусканием позитронов. Это была, несомненно, новая форма бета-распада. Это была и новя поддержка гипотезы Гейзенберга. Достаточно предположить, что при этом протон внутри ядра превращается в нейтрон и позитрон, и теория позитронного бета-распада готова. Так вновь опыт давал намек на сложную природу элементарных частиц.

Протон и нейтрон могли оказаться разновидностями одной и той же частицы или просто превращаться друг в друга, причем в этих превращениях участвовала несомненная пара — электрон и позитрон.

До того как принять одну из этих догадок за истину или создать другую теорию, нужно было обязательно понять, почему эти превращения происходят только внутри радиоактивных ядер, а в других ядрах и в свободном состоянии ни протон, ни нейтрон не распадаются.

Но прежде чем приняться за эту сложную работу, пришлось признать права гражданства еще одной частицы-невидимки, еще одного нейтрино. Это нейтрино необходимо для

обеспечения закона сохранения при позитронном бета-распаде, так же как первое нейтрино стало неизбежным участником обычного бета-распада.

Оказалось, оба нейтрино почти тождественны между собой. Они должны были отличаться только одной характеристикой, знаком особой величины, играющей роль только в микромире. Эта величина называется спином. В обычном мире больших вещей на спин больше всего похоже упрямство вращающегося волчка, который противится всякой попытке наклонить его ось. У большинства микрочастиц есть что-то похожее на это стремление сохранить направление какого-то подобия оси. Приняв эту аналогию, можно говорить, что микрочастицы, имеющие спин, как бы вращаются. Тогда, если первое из нейтрино вращается по часовой стрелке, то второе — в противоположном направлении (если смотреть вдоль линии полета частицы). Новая частица получила наименование антинейтрино.

К курьезам на тропах науки относится тот факт, что со временем нейтрино и антинейтрино пришлось поменяться именами. Первому нейтрино, рождающемуся вместе с протоном и электроном при распаде нейтрона, ученые присвоили частицу -«анти», а второе, рождающееся вместе с нейтроном и позитроном при распаде протона, назвали просто нейтрино.

Это переименование объясняется не капризами физиков, а требованиями симметрии, регулирующими все процессы в микромире. В каждом из этих распадов рождается по одной античастице. В первом из нейтрона рождается антинейтрино (наряду с двумя обычными частицами), а во втором из протона рождаются позитрон (античастица электрона) и две обычные частицы нейтрон и нейтрино.

Так в результате совместных усилий теоретиков и экспериментаторов число «кирпичей мироздания», сильно уменьшившееся после отречения от этой роли атомов, снова возросло. В начале тридцатых годов к семье элементарных частиц принадлежали: фотон, пара — нейтрино и антинейтрино, пара — электрон и позитрон и две «тяжелые» ядерные частицы — протон и нейтрон.

Находки и разочарования

Картина строения материи снова приобрела заманчивую ясность, но вопрос о причинах устойчивости атомных ядер оставался нерешенным. Никакое из двух известных силовых полей: ни гравитационное (поле тяготения), ни электромагнитное не могли удержать одноименно заряженные протоны и нейтральные нейтроны внутри ядра, размер которого составляет примерно стотысячную долю от миллиардной части сантиметра.

В 1932 году советский физик Тамм высказал предположение, что, может быть, электроны являются источниками еще неизвестного неэлектромагнитного поля, придающего ядру атома столь прочное строение. Может быть, электроны — это кванты поля, с которым связаны ядерные силы? Но когда Тамм произвел расчет, оказалось, что поле, квантами которого могли бы быть электроны, в тысячу миллиардов раз меньше, чем действительные ядерные силы. Поскольку в то время другие частицы, кроме электронов, подходящие для роли квантов поля ядерных сил, не были известны, Тамму пришлось поставить на этом точку.

Как видно, нужно было поставить вопрос: а какова должна быть частица, дающая такое поле? И, получив на бумаге такую частицу, дать «технические условия» экспериментаторам на ее поиски. Так это и случилось. Работа Тамма была продолжена. И решающий шаг, приведший к открытию цемента, скрепляющего протонно-нейтронное ядро, сделал в 1935 году японский физик-теоретик Юкава. Он написал уравнение для ядерных частиц, чтобы с его помощью узнать, какова должна быть природа сил, скрепляющих ядро. Это уравнение в своей абстрактной математической форме объединяло колоссальную мощь теории относительности и квантовой механики. Одно из его решений давало хорошо известные фотоны — частицы электромагнитного поля с массой покоя, равной нулю. Но силы электромагнитного поля могли только расталкивать одноименно заряженные протоны. На нейтроны они просто не действуют. Это решение не годилось для получения ответа на загадки ядра.

Поделиться с друзьями: