Бог и Мультивселенная. Расширенное понятие космоса
Шрифт:
Из этого следует, что скорость света в вакууме с = 299792458 м/с по определению. Многие физики и большинство ученых из других сфер науки, похоже, все еще считают, что значение c непостоянно и может изменяться в зависимости от времени или точки пространства. Это невозможно, потому что с по определению имеет точное значение.
Относительность энергии и импульса
Эйнштейн обнаружил, что энергия и импульс также относительны. Однако масса постоянна, то есть ее значение одинаково во всех системах отсчета. В системах единиц измерения, где скорость света равна единице (с = 1), мы получаем простые отношения массы, энергии и импульса, которые определяют инерционные свойства тела и показывают, как они связаны между собой.
7
Часто можно услышать, что энергия Е = mс2, содержащаяся в теле массой m, огромна, поскольку с = 3•108 м/с, что очень много. На самом деле числовое значение c выбирается произвольно и в этом случае оно велико только потому, что вы выбрали для с большое число. Энергия покоя равна массе всегда, за исключением некоторых систем единиц измерения.
Другое известное следствие из специальной теории относительности заключается в том, что тело, имеющее массу, не может разогнаться до скорости света или большей. Это значит, что существует известный предел скорости, равный с. Тут мне придется развеять еще одно распространенное заблуждение. Специальная теория относительности не запрещает частицам двигаться со скоростью, превышающей скорость света, если они движутся с такой скоростью всегда. Эти частицы называются тахионами. Но пока это только гипотеза. Ни одной такой частицы обнаружить еще не удалось [8] .
8
В 2011 году ЦЕРН сообщил, что им удалось измерить скорость нейтрино, которая превысила скорость света. СМИ раструбили, будто ученые доказали, что Эйнштейн ошибался. Но оказалось, что эти результаты были следствием неполадок в электроснабжении. Однако, даже если бы это оказалось правдой, эйнштейновский предел скорости не был бы нарушен. Просто эти частицы были бы признаны тахионами, существование которых теория относительности допускает.
Специальная теория относительности требует иного набора уравнений для расчета большинства величин, имеющих отношение к движению частиц, если скорости частиц приближаются к скорости света. Однако все остальное свидетельствует о том, что на скоростях существенно ниже скорости света эти формулы сводятся к знакомым формулам Ньютона.
Своей специальной теорией относительности Эйнштейн исключил эфир из материальной картины мира и вернул космосу демокритовскую пустоту, устранив эмпирическое несоответствие, описанное Майкельсоном и Морли, и теоретическую проблему, связанную с уравнениями электромагнетизма Максвелла. Они полностью согласуются с принципом относительности. Скорости все также относительны — все, кроме скорости света. Она же, как мы только что доказали, представляет собой произвольное число, которое просто определяет, какие единицы измерения пространства и времени вы хотите использовать. В этой книге я преимущественно пользуюсь значением с = 1 световой год в год.
Общая теория относительности
В ноябре 1907 года Эйнштейн сидел в своем кресле в патентном бюро города Берна, когда, как он позже описывал:
«…Мне в голову пришла мысль: “В свободном падении человек не ощущает своего веса!” Я был поражен. Эта простая мысль произвела на меня огромное впечатление. Развив ее, я пришел к теории тяготения»{99}.
Эйнштейновская теория гравитации была опубликована только в 1916 году в форме общей теории относительности. Специальная теория относительности применима только для систем отсчета, движущихся с постоянной скоростью. Эйнштейну удалось добавить ускорение в новую гравитационную теорию, в рамках которой можно было
спрогнозировать слабые эффекты, не поддающиеся объяснению в рамках теории Ньютона.Позвольте мне изложить суть догадки Эйнштейна следующим образом. Наблюдатель, находящийся в закрытой капсуле в свободном падении, не сможет отличить это состояние от состояния, в котором он в той же самой капсуле находится в космосе, вдали от каких-либо планет и звезд. Более того, если этой космической капсуле придать, скажем, с помощью ракетного двигателя такое же ускорение, какое получает падающий на землю объект, к примеру яблоко, упавшее на Ньютона, то он не сможет отличить это состояние от обычного состояния покоя на Земле. То есть ускорение и гравитация ощущаются одинаково.
Наблюдатель в капсуле мог бы провести точные измерения траекторий падающих тел, которые будут сходиться к центру Земли в случае, если капсула находится на ее поверхности. Но, если капсула получает ускорение в космосе, эти линии будут параллельными. Итак, две эти ситуации формально могут считаться одинаковыми только на бесконечно малом участке пространства. Этот принцип называется принципом локальности.
В гравитационной модели, разработанной Эйнштейном, сила тяготения практически устранена. Тело, на которое не действуют никакие силы, следует геодезической траектории через неевклидово пространство-время подобно самолету, описывающему большую окружность от одной точки на поверхности Земли до другой, чтобы минимизировать пройденный путь. Земля вращается вокруг Солнца по эллипсу, потому что такова форма геодезической траектории вокруг объекта с большой массой.
Эйнштейн придумал формулу, которая позволила ему рассчитать модель пространства-времени и внутреннюю геометрию поверхности, исходя из распределения вещества в пространстве:
Эйнштейна беспокоило то, что сила всемирного тяготения, имеющая исключительно притягивающий характер, должна привести Вселенную к коллапсу. В те времена все думали, что Вселенная окружена неподвижной твердью, как сказано в Библии. Поэтому Эйнштейн добавил в свое уравнение гравитационного поля еще одно понятие — космологическую постоянную (КП), обозначив ее символом :
Итак, КП является еще одним компонентом пространственно-временной кривой, который может иметь положительное или отрицательное значение. Если положительна, результатом будет гравитационное отталкивание, которое, как считал Эйнштейн, стабилизирует Вселенную.
Заметьте, что космологическую постоянную вполне можно записать в правой части уравнения как часть плотности вещества:
Но это все то же уравнение, и формулировка не меняет его смысла. Вот пример того, почему было бы ошибкой пытаться приписывать математическим моделям метафизическую сущность. Космологическая постоянная действительно часть пространственно-временной кривой или действительно часть материи? Это не имеет значения. Это всего лишь человеческая выдумка, оба варианта дают одинаковый эмпирический результат.
Общая теория относительности прогнозировала ряд явлений, которые нельзя было объяснить в рамках ньютоновской теории всемирного тяготения. Одно из них наблюдалось к тому моменту уже в течение некоторого времени и было еще одной эмпирической аномалией, которую физика XIX века была бессильна объяснить. В 1859 году Урбен Леверье, упомянутый в главе 4 как первооткрыватель Нептуна, на основании готовых записей наблюдений определил, что скорость смещения перигелия Меркурия расходится со скоростью, рассчитанной на основании теории Ньютона, на 38 угловых секунд за 100 лет, а пересчитанное позднее, это значение составило 43 угловые секунды. В ноябре 1915 года Эйнштейн пересчитал его на основании своей новой общей теории и получил верное число. Он был так взбудоражен этим результатом, что, по его словам, у него «сердце затрепетало»{100}.
Эйнштейн также определил, что световые лучи отклоняются под воздействием Солнца. Эта идея была не нова, она восходит еще к Ньютону. В одном из примечаний к «Оптике» издания 1704 года Ньютон предположил, что частицы в его корпускулярной теории света будут испытывать воздействие гравитации, как всякое другое вещество. В 1801 году немецкий астроном и физик Иоганн Георг фон Зольднер (1776–1833) на основе ньютоновской физики рассчитал, что отклонение луча, состоящего из корпускул, скользящего по поверхности Солнца, составит 0,9 угловой секунды. Однако в те времена измерить такое крошечное отклонение было технически невозможно, и, как мы уже знаем, в начале XIX века от корпускулярной теории света Ньютона отказались в пользу волновой теории.