Чтение онлайн

ЖАНРЫ

Большая энциклопедия техники

Коллектив авторов

Шрифт:

Рентгеновский микроскоп

Рентгеновский микроскоп – прибор, исследующий микроскопическую структуру и строение объекта при использовании рентгеновского излучения. Рентгеновский микроскоп имеет больший предел разрешения, чем световой микроскоп, потому что рентгеновское излучение имеет меньшую длину волны, чем световая волна. Рентгеновский микроскоп отличается от оптического светового микроскопа прежде всего оптической системой. Для фокусировки рентгеновских лучей нельзя использовать оптические световые линзы и призмы. Для отражения рентгеновских лучей в рентгеновском микроскопе используют изогнутые зеркальные или кристаллографические плоскости.

Рентгеновские лучи имеют большую проникающую способность и линейную структуру спектра. Рентгеновские микроскопы различаются по способу действия и бывают отражательными и проекционными.

Конструкция отражательного микроскопа включает

источник рентгеновского излучения, изогнутые зеркала-отражатели, сделанные из кварца с золотым слоем, или отражателем может быть изогнутый монокристалл, детектор изображения – фотопленка или электронно-оптический преобразователь. Но отражательные рентгеновские микроскопы не обладают большим разрешением, его ограничивают малый угол полного внешнего отражения, большое фокусное расстояние и трудоемкость качественной обработки зеркальной отражательной поверхности. Отражательные рентгеновские микроскопы создают сильно искаженные изображения. Если для фокусировки применяются изогнутые монокристаллы, изображение тоже получается искаженным из-за структуры самого монокристалла. Поэтому рентгеновские отражательные микроскопы не имеют широкого применения. Более эффективными оказываются проекционные рентгеновские микроскопы. Принцип действия проекционных рентгеновских микроскопов заключается в образовании теневой проекции исследуемого объекта в пучке расходящихся рентгеновских лучей, идущих от точечного источника рентгеновского излучения. Конструкция проекционного рентгеновского микроскопа включает источник рентгеновских лучей – микрофокусную рентгеновскую трубку, камеру, в которой находится регистрирующее устройство, и камеру, в которой располагается объект исследования. Объект в таком микроскопе находится близко к источнику рентгеновского излучения, потому что в методе рентгеновской микроскопии отношение расстояний от источника излучений до детектора и до объекта дает увеличение изображения. В проекционных рентгеновских микроскопах фокус трубки находится на окне трубки, и их разрешение составляет до 0,5 мкм. Различные области объекта, имеющие разную плотность или состав, по-разному поглощают рентгеновское излучение. И чем больше разница коэффициентов этого поглощения, тем точнее результат и тем чувствительнее рентгеновский микроскоп. Поэтому проекционные рентгеновские микроскопы исследуют микроскопическое строение, структуру и свойства веществ и объектов и используются в различных областях производства и науки: в минералогии, биологии, металлургии, для определения качества отделки поверхностей, внутреннего строения, концентрации составов различных материалов. И при этом исследование проекционным рентгеновским микроскопом осуществляется проще, быстрее и качественнее, чем оптическим световым.

Спирограф

Спирограф – это прибор, позволяющий исследовать функции легких посредством измерения легочных дыхательных объемов.

Сущность работы данного прибора заключается в том, что при присоединении спирографа к дыхательным путям пациента он начинает реагировать на достаточно объемные перемещения воздуха в легкие или из них.

Существует два вида спирографов: первый, когда в одну или обе дыхательные фазы аппарат непосредственно сообщается с атмосферой (открытые спирографы), другой вид – сообщается лишь с самими дыхательными путями (закрытые спирографы).

По сути в устройстве аппаратов разница невелика, единственное, чем они отличаются, – это своей функциональностью.

Простейшим открытым спирографом является водяной. Он состоит из небольшого цилиндра, который полностью заполнен водой, и в нее погружен кверху дном колокол, связанный с регистратором и уравновешенный специальным противовесом. Сам цилиндр имеет внутри себя трубку, один конец которой расположен над уровнем воды под колоколом, а другой конец выведен наружу для подключения к больному. Обследуемый вдыхает воздух, это может производиться как свободным путем, так и с помощью специальных клапанов вдоха, и выдыхает его в образовавшееся пространство под колоколом, вследствие чего колокол поднимается на определенную величину, которая пропорциональна объему выдыхаемого воздуха, и одновременно перемещает перо регистратора.

Помимо водяных спирографов имеются также и сухие, в которых чувствительным элементом служит растяжимый мех, сообщающийся с дыхательными путями, по изменению длины данного меха в процессе дыхания судят о результатах обследования, поскольку изменение длины передается на регистратор.

Принято считать, что основоположником всей спирографии и первым изобретателем настоящего спирографа является Г. Гетчинсон, который сконструировал данный аппарат, в дальнейшем нашедший широкое применение в клинике, и разработал основы представлений о легочных объемах.

При помощи спирографа можно измерить такие величины,

как дыхательный объем (объем воздуха, вдыхаемого и выдыхаемого при одном дыхательном цикле), резервный объем вдоха (наибольший объем воздуха, который можно вдохнуть после спокойного вдоха), резервный объем выдоха (наибольший объем воздуха, который можно выдохнуть после спокойного выдоха). Также с помощью спирографа можно исследовать механику дыхания, оценивать ее нарушения и резервы дыхательной функции. Особое значение спирографы имеют для оценки терапевтических воздействий на легкие и при врачебном контроле. Запись глубины дыхания (спирограмма) входит в состав других методов исследования функции легких – оценки растяжимости легких, работы дыхания, реакции на углекислый газ и гипоксию.

Еще в СССР серийно выпускались спирографы открытого типа «Спиро 2-25», который регистрировал во времени объемы дыхания в покое и при умеренной нагрузке обследуемого, и спирометр водяной 18В открытого типа, который измерял объем выдыхаемого воздуха, спирографы закрытого типа Метатест-1 и Метатест-2. Для определения остаточного объема легких выпущен прибор ПООЛ-1. Для общей и раздельной бронхоспирографии выпускают прибор Бронхометатест-1, измеряющий и регистрирующий во времени объемы дыхания и потребление кислорода обоими легкими и каждым легким в отдельности.

Сейчас широко распространились спирографы с элементами вычислительной техники, поскольку они позволяют получать во время исследования большое количество определяемых и рассчитываемых показателей, что сделало спирографию более удобной.

Спирометр

Спирометр – это прибор, при помощи которого можно осуществить измерение дыхательных объемов и жизненной емкости легких для исследования их функций.

Спирометрия отличается от спирографии тем, что при последней измерения дыхательных объемов записываются на спирограмме – графическом изображении полученных результатов.

Таким образом, в литрах или миллилитрах можно измерить следующее: дыхательный объем – вдыхаемый и выдыхаемый воздух при каждом дыхательном цикле; резервный объем вдоха – максимальная величина воздуха после спокойного вдоха; резервный объем выдоха – максимальная величина воздуха после спокойного выдоха; жизненная емкость легких – сумма дыхательного, резервного объема вдоха и резервного объема выдоха; форсированная жизненная емкость легких; функциональная остаточная емкость – количество газа, который находится в легких после спокойного выдоха; остаточный объем легких – разность функциональной остаточной емкости и резервного объема выдоха; общая емкость легких – сумма жизненной емкости легких и их остаточного объема. Именно все вышеперечисленные показатели могут свидетельствовать о тех или иных отклонениях или патологиях дыхательной системы человека. В связи с этим при помощи спирометра можно исследовать механику дыхания, оценивать ее нарушения и резервы дыхательной функции. Спирометрия имеет важное значение для оценки терапевтического воздействия на легкие и при врачебном контроле.

Основоположником спирографии и спирометрии считается ученый Г. Гетчинсон, поскольку он первым сконструировал в 1846 г. первый спирограф, который мог найти свое применение в клинике, также он смог разработать основы представлений о легочных объемах. Но существуют мнения, что спирометр был изобретен гораздо раньше, чем спирограф, это связано с тем, что спирометр по своей конструкции мало чем отличается от спирографа и одновременно является наиболее простым по своей сути.

Сама процедура измерения и исследования легких пациента является нетравматичной. Исследование проводится натощак или же через 3—4 ч после легкого завтрака. Испытуемому вводят загубник, посредством которого происходит контакт пациента с аппаратом, при этом на нос накладывается зажим. Обследуемому предлагают сделать максимально глубокий вдох, после которого следует полный глубокий спокойный выдох. Затем пациенту предлагается сделать максимально глубокий форсированный вдох, а потом – полный форсированный выдох.

После небольшого перерыва пациент дышит в течение нескольких минут смесью воздуха и гелия, который используется в роли индикатора для расчета таких показателей, как функциональная остаточная емкость, остаточный объем легких и общая емкость легких, а также равномерность альвеолярной вентиляции.

В том случае, если происходит снижение большой части показателей спирометрии в среднем на 20% от функциональных норм, это расценивается как признак патологии. Также неблагоприятным симптомом является увеличение показателей остаточного объема легких и функциональной остаточной емкости. Еще по результатам спирометрии распознается наличие и выраженность рестриктивных (рестрикция – затруднение растяжения легких и грудной клетки) и обструктивных (обструкция – ухудшение проходимости дыхательных путей) нарушений.

Поделиться с друзьями: