Большая энциклопедия техники
Шрифт:
Конструктивно диффузионные насосы схожи с бустерными. Однако их выпускное давление обычно на порядок ниже, чем у бустерных, и составляет 10—40 Па. Диффузионные насосы обычно работают при меньших давлениях пара в кипятильнике и требуют относительно меньшую мощность нагревателя.
Конструкции паромасляных диффузионных насосов имеют ряд особенностей, связанных с использованием в качестве рабочих жидкостей масла или сложных эфиров. Это прежде всего устройства, обеспечивающие фракционирование (т. е. разделение на фракции) неоднородных масел, причем тяжелые фракции (с низким давлением насыщенного пара) направляются в сопло первой (высоковакуумной) ступени, чем обеспечиваются низкое предельное остаточное давление и высокое быстродействие насоса в целом, а легкие фракции (с высоким давлением насыщенного пара) направляются в сопло последней ступени, обеспечивая высокое выпускное давление. Насосы с таким устройством называются фракционирующими или разгоночными. Сварной корпус насоса выполнен из малоуглеродистой стали с наваренной на него рубашкой водяного охлаждения. Паропровод с двумя зонтичными соплами изготовлен из алюминия. Последней выходной ступенью
Фракционирование масла, стекающего в кипятильник с периферии по стенке корпуса, осуществляется с помощью лабиринтных колец, удлиняющих путь масла до поступления в центральную зону кипятильника, откуда питается паром высоковакуумное сопло, так что легкие фракции масла успевают испариться на периферии кипятильника, откуда они поступают во второе зонтичное и эжекторное сопла насоса. В непрогреваемых вакуумных системах с резиновыми уплотнителями паромасляные диффузионные насосы обеспечивают предельное остаточное давление около 5 x 10– 4 Па без ловушек и около 5 x 10– 5 Па с ловушками, охлаждаемыми кипящим жидким азотом. Характерна зависимость быстроты действия диффузионного насоса от впускного давления.
Предельное остаточное давление пароструйного диффузионного насоса в значительной мере определяется качеством фракционирования масла и содержанием газов в масле, стекающем в кипятильник, так как чем лучше обезгазено масло, тем меньше газов заносится паровой струей на впуск насоса. Лабиринтные кольца не прилегают плотно к днищу кипятильника, в связи с чем не обеспечивают достаточно полного фракционирования масла. Для улучшения фракционирования масла в современных насосах лабиринтные кольца выполняют непосредственно в днище кипятильника, а паропроводящие трубы сопл плотно надеваются на перегородки соответствующих каналов лабиринтных колец. Обезгазивание масла в насосах улучшено тем, что нижняя часть корпуса не охлаждается (для этого водяную рубашку укорачивают), так что температура масла в нижней части достигает 140 °С, а также благодаря удлинению пути конденсата в горячей зоне, для чего на стенке корпуса ниже выпускного патрубка предусмотрена винтовая канавка, по которой конденсат стекает в кипятильник.
Насос с улучшенным фракционированием и обезгазиванием способен на обычном минеральном масле без применения азотной ловушки создавать предельное остаточное давление 1 x х 10– 6 Па. Ухудшение условий охлаждения насоса при повышении температуры воды ведет к заметному повышению предельного остаточного давления и уменьшению быстроты действия. Однако в ряде случаев, особенно в передвижных вакуумных установках, например в масс-спектрометрическом течеискателе, эксплуатация насосов с водяным охлаждением неудобна, и здесь используются небольшие диффузионные насосы с принудительным воздушным охлаждением. Таким образом, что основные характеристики паромасляных насосов (диффузионных и бустерных) определяются как конструкцией насоса, так и родом рабочей жидкости. У всех насосов существует порог мощности подогрева, ниже которого насос не работает совсем. Наибольшее выпускное давление возрастает по мере увеличения мощности подогрева; это объясняется увеличением плотности струи. Рост предельного остаточного давления вначале уменьшается, что связано с уменьшением противодиффузии газов через струю по мере увеличения плотности струи. И у паромасляных диффузионных насосов предельное остаточное давление проходит через минимум, лежащий вблизи пороговой мощности подогрева; дальнейшее увеличение предельного остаточного давления объясняется разложением масла в кипятильнике и заносом образующихся легких фракций в сопло первой ступени. Заметим, что в парортутных насосах этого не происходит. Быстрота действия Sн проходит через максимум, что связано с изменением плотности струи.
Основные характеристики пароструйных диффузионных насосов существенно зависят от молекулярной массы откачиваемого газа, что связано с большим коэффициентом диффузии у легких газов (водород, гелий) через паровую струю, чем у тяжелых газов (аргон, азот). Имеет место влияние выпускного давления азота и водорода на предельное остаточное давление. Увеличение выпускного давления азота в довольно широких пределах не влияет на предельное остаточное давление; только при превышении наибольшего для данного насоса выпускного давления Рнаиб происходит резкое повышение давления на впуске, и насос прекращает работу.
Увеличение выпускного давления водорода сразу же сказывается на предельном остаточном давлении насоса. Теоретическая быстрота действия Sг паровой струи при молекулярном режиме течения газа определяется проводимостью входного сечения насоса. Истинная быстрота действия насоса Sн за счет отражения части молекул от струи и противодиффузии газа меньше теоретической ST; отношение SH / ST = зависит от рода газа и составляет обычно для воздуха 0,3—0,5.
Быстрота действия диффузионных насосов уменьшается как в области высоких давлений, так и в области предельного остаточного давления. Уменьшение быстроты действия диффузионного насоса в области высоких давлений объясняется возрастанием выпускного давления (из-за ограниченности быстроты действия форвакуумного насоса) и нарушением работы паровой струи. Уменьшение быстроты действия в области предельного остаточного давления связано с возрастающим влиянием заноса газа в верхнее сопло и противодиффузии газа через струю. Состав остаточных газов паромасляного диффузионного насоса представляет собой широкий
набор углеводородных соединений с массовыми числами до 250. С помощью эффективных ловушек из состава остаточных газов могут быть исключены практически все углеводородные соединения. Обратный поток паров масла, поступающий в единицу времени с единицы площади сечения впускного патрубка диффузионного насоса, работающего без ловушки, составляет обычно 1—5 мг/(ч x см2). С помощью эффективных ловушек эта величина может быть уменьшена до 1 x 10– 5 – 1 x 10– 6 мг / / (ч x см2). Резкие непродолжительные увеличения обратного потока паров масла имеют место в периоды запуска и остановки насоса, когда паровая струя еще не сформировалась или уже потеряла форму. Часто диффузионный насос с затвором, маслоотражателем и ловушкой выполняется как единая вакуумная установка, которая называется вакуумным агрегатом.Практические указания по эксплуатации. Струйные насосы должны эксплуатироваться только с рекомендованной рабочей жидкостью, для которой заводом-изготовителем (разработчиком) выбраны критические проходные сечения сопл и режим эксплуатации. Эксплуатационные мероприятия сводятся в основном к сохранению количества и качества рабочей жидкости в насосе и к мерам защиты откачиваемого сосуда от чрезмерного проникновения в него паров масла. Для этого следует придерживаться обычной последовательности операций при запуске насоса: откачать пароструйный насос форвакуумным насосом, включить подачу охлаждающей воды, включить нагреватель (при этом возможно небольшое увеличение давления за счет газовыделения из разогревающегося масла); после запуска насоса (через 30—60 мин в зависимости от его размеров) охладить азотную ловушку и медленно открыть затвор или кран на входе насоса (при этом давление в откачиваемом сосуде должно быть не выше рекомендованного начального давления). Остановка насоса всегда начинается с закрытия затвора, затем размораживается азотная ловушка и после этого выключается нагреватель. Форвакуумная откачка и водяное охлаждение прекращаются после охлаждения кипятильника, которое можно ускорить, сняв нагреватель и обдувая кипятильник воздухом. В некоторых насосах в днище кипятильника имеются каналы водяного охлаждения, что значительно сокращает время охлаждения насоса.
Рассмотрим аварийные ситуации. При разгерметизации откачиваемого сосуда или прекращении подачи охлаждающей воды должен быть перекрыт затвор на впуске насоса и отключен нагреватель; форвакуумная откачка при этом продолжается. При аварийной остановке форвакуумного насоса должны быть перекрыты форвакуумный кран и затвор на впуске, а также отключен нагреватель. При выходе из строя нагревателя должен быть перекрыт затвор на впуске. Работа нагревателя при повышенном давлении в насосе (например, если забыли включить форвакуумную откачку или при аварии в форвакуумной системе некоторое время не был отключен нагреватель) ведет к перегреву рабочей жидкости. В таких случаях следует до начала форвакуумной откачки дать рабочей жидкости несколько остыть, отключив нагреватель, в противном случае бурное вскипание перегретой рабочей жидкости приводит к сильным выбросам ее из насоса. Некоторый вынос рабочей жидкости в форвакуумную коммуникацию происходит при прохождении через разогретый насос больших потоков газа.
Турбомолекулярные насосы
Принцип действия турбомолекулярного насоса основан на сообщении молекулам разреженного газа направленной дополнительной скорости быстро движущейся твердой поверхностью.
Рабочий механизм насоса образован роторными и статорными дисками, имеющими радиальные косые пазы – каналы, боковые стенки которых наклонены относительно плоскости диска под углом 40—15°; причем пазы статорных дисков расположены зеркально относительно пазов роторных дисков. Между статорными дисками и валом ротора и между роторными дисками и корпусом насоса имеются зазоры. При молекулярном режиме течения газа в насосе, т. е. при давлениях ниже 10– 1—1 Па, такая система подвижных и неподвижных пазов обеспечивает преимущественное прохождение молекул газа в направлении откачки. Действительно, молекула газа, прошедшая через статорный паз (или отразившаяся от статорного диска и движущаяся к роторному диску слева), попав в паз роторного диска, имеет большую вероятность пройти через него, так как боковая стенка роторного паза уходит с пути молекулы. Стенка не может ее нагнать, в то время как такая же молекула, подходящая к роторному диску справа, т. е. против направления откачки, вошедшая в паз, будет с большой вероятностью задержана стенкой роторного паза и отражена обратно в направлении откачки. Молекулы, отраженные роторным диском, кроме тепловой скорости, приобретают дополнительную скорость. Эта скорость равна окружной скорости роторного диска и направлена параллельно оси насоса. Благодаря соответствующему углу наклона боковых стенок статорного паза здесь также обеспечивается преимущественное прохождение молекул в направлении откачки.
Таким образом, каждая ступень, состоящая из роторного и статорного дисков, создает перепад давлений. Причем наибольшее отношение давлений по обе стороны ступени (степень сжатия) равно приблизительно отношению вероятностей перехода молекул через паз в направлении откачки и в обратном направлении, а наибольшая возможная быстрота ступени пропорциональна разности 1– 2 – 2– 1. В области достигнутых окружных скоростей в современных промышленных турбомолекулярных насосах разность 1– 2 – 2– 1 характеризуется почти линейной зависимостью, т. е. эффективность насоса возрастает с ростом окружной скорости ротора и с уменьшением наиболее вероятной скорости молекул. Расчеты показывают, что максимальная быстрота действия достигается при угле наклона пазов около 30°. С другой стороны, для получения достаточно высокой степени сжатия в одной ступени (от 3 до 5) угол наклона паза должен быть не более 20°.