Большая Советская Энциклопедия (КА)
Шрифт:
И. Н. Дьяконова.
Капиллярные волны
Капилля'рные во'лны,волны на поверхности жидкости малой длины. В восстановлении равновесного состояния поверхности жидкости при К. в. основную роль играют силы поверхностного натяжения .
Капиллярные явления
Капилля'рные явле'ния, физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К К. я. относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром. Искривление поверхности ведёт к появлению в жидкости дополнительного капиллярного давления Dp , величина которого связана со средней кривизной r
К. я. охватывают различные случаи равновесия и движения поверхности жидкости под действием межмолекулярных сил и внешних сил (в первую очередь силы тяжести).
В простейшем случае когда внешние силы отсутствуют или скомпенсированы, поверхность жидкости всегда искривлена. Так, в условиях невесомости ограниченный объём жидкости, не соприкасающейся с др. телами, принимает под действием поверхностного натяжения форму шара. Эта форма отвечает устойчивому равновесию жидкости, поскольку шар обладает минимальной поверхностью при данном объёме, и, следовательно, поверхностная энергия жидкости в этом случае минимальна.
Форму шара жидкость принимает и в том случае, если она находится в другой, равной по плотности жидкости (действие силы тяжести компенсируется архимедовой выталкивающей силой, см. Архимеда закон ). При нескомпенсированной силе тяжести картина существенно меняется Маловязкая жидкость (например, вода), взятая в достаточном количестве, принимает форму сосуда, в который она налита. Её свободная поверхность оказывается практически плоской, т.к. силы земного притяжения преодолевают действие поверхностного натяжения, стремящегося искривить и сократить поверхность жидкости. Однако по мере уменьшения массы жидкости роль поверхностного натяжения снова становится определяющей: при дроблении жидкости в среде газа или газа в жидкости образуются мелкие капли или пузырьки практически сферической формы (см. Капля ).
Свойства систем, состоящих из многих мелких капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их образования во многом определяются кривизной поверхности частиц, т. е. К. я. Не меньшую роль К. я. играют и при образовании новой фазы: капелек жидкости при конденсации паров, пузырьков пара при кипении жидкостей, зародышей твёрдой фазы при кристаллизации .
При контакте жидкости с твёрдыми телами на форму её поверхности существенно влияют явления смачивания , обусловленные взаимодействием молекул жидкости и твёрдого тела. На рис. 1 показан профиль поверхности жидкости, смачивающей стенки сосуда. Смачивание означает, что жидкость сильнее взаимодействует с поверхностью твёрдого тела (капилляра, сосуда), чем находящийся над ней газ. Силы притяжения, действующие между молекулами твёрдого тела и жидкости, заставляют её подниматься по стенке сосуда, что приводит к искривлению примыкающего к стенке участка поверхности. Это создаёт отрицательное (капиллярное) давление, которое в каждой точке искривленной поверхности в точности уравновешивает давление, вызванное подъёмом уровня жидкости. Гидростатическое давление в объёме жидкости при этом изменений не претерпевает.
Если сближать плоские стенки сосуда таким образом, чтобы зоны искривления начали перекрываться, то образуется вогнутый мениск —
полностью искривленная поверхность. В жидкости под мениском капиллярное давление отрицательно, под его действием жидкость всасывается в щель до тех пор, пока вес столба жидкости (высотой h ) не уравновесит действующее капиллярное давление Dp . В состоянии равновесия(r1 — r2 ) gh = Dp= 2s12 /r ,
где r1 и r2 — плотность жидкости 1 и газа 2; g — ускорение свободного падения. Это выражение, известное как формула Д. Жюрена (J. Jurin, 1684—1750), определяет высоту h капиллярного поднятия жидкости, полностью смачивающей стенки капилляра. Жидкость, не смачивающая поверхность, образует выпуклый мениск, что вызывает сё опускание в капилляре ниже уровня свободной поверхности (h < 0).
Капиллярное впитывание играет существенную роль в водоснабжении растений, передвижении влаги в почвах и др. пористых телах. Капиллярная пропитка различных материалов широко применяется в процессах химической технологии.
Искривление свободной поверхности жидкости под действием внешних сил обусловливает существование т. н. капиллярных волн («ряби» на поверхности жидкости). К. я. при движении жидких поверхностей раздела рассматривает физико-химическая гидродинамика .
Движение жидкости в капиллярах может быть вызвано разностью капиллярных давлений, возникающей в результате различной кривизны поверхности жидкости. Поток жидкости направлен в сторону меньшего давления: для смачивающих жидкостей — к мениску с меньшим радиусом кривизны (рис. 2 , а).
Пониженное, в соответствии с Кельвина уравнением , давление пара над смачивающими менисками является причиной капиллярной конденсации жидкостей в тонких порах.
Отрицательное капиллярное давление оказывает стягивающее действие на ограничивающие жидкость стенки (рис. 2 , б). Это может приводить к значительной объёмной деформации высокодисперсных систем и пористых тел — капиллярной контракции. Так, например, происходящий при высушивании рост капиллярного давления приводит к значительной усадке материалов.
Многие свойства дисперсных систем (проницаемость, прочность, поглощение жидкости) в значительной мере обусловлены К. я., т.к. в тонких порах этих тел реализуются высокие капиллярные давления.
К. я. впервые были открыты и исследованы Леонардо да Винчи (15 в.), затем Б. Паскалем (17 в.) и Д. Жюреном (18 в.) в опытах с капиллярными трубками. Теория К. я. развита в работах П. Лапласа (1806), Т. Юнга (1805), С. Пуассона (1831), Дж. Гиббса (1875) и И. С. Громеки (1879,1886).
Лит .: Адам Н. К., Физика и химия поверхностей, пер. с англ., М., 1947; Громека И. О., Собр. соч., М., 1952.
Н. В. Чураев.
Рис. 1. Капиллярное поднятие жидкости, смачивающей стенки (вода в стеклянном сосуде и капилляре).
Рис. 2. а — перемещение жидкости в капилляре под действием разности капиллярных давлений (r1 > r2 ); б — стягивающее действие капиллярного давления.
Капилляроскопия
Капилляроскопи'я (от капилляры и греч. skop'eo — смотрю), метод прижизненного изучения осмотром (под увеличением) капилляров эпителиальных или эндотелиальных покровов животных и человека (кожа, слизистые оболочки и др.). У человека исследуют капилляры кожной складки ногтевого ложа, где они наиболее доступны наблюдению. Для К. используют микроскоп или специальный аппарат — капилляроскоп. Увеличение микроскопа в 20—100 раз после нанесения на кожу капли просветляющего масла, хорошее боковое освещение обеспечивают хорошую видимость. Изменения капилляров наблюдаются при нарушениях периферического кровообращения различного происхождения (при сосудистых неврозах, ранних стадиях сердечной недостаточности, облитерирующем эндартериите и др.). Изменения, видимые при К., не являются строго специфичными для того или иного патологического состояния; они возникают как приспособительный механизм при нарушении общего кроветока. Поэтому К. является лишь дополнительным диагностическим методом в общеклиническом исследовании.