Большая Советская Энциклопедия (КР)
Шрифт:
Лит.: Головин Б. М., Осипенко Б. П., Сидоров А. И., Гомогенные кристаллические счетчики ядерных излучений, «Приборы и техника эксперимента», 1961, № 6, с. 5; Дирнли Дж. и Нортроп Д. К., Полупроводниковые счетчики ядерных излучений, пер. с англ., М., 1966.
С. Ф. Козлов.
Блок-схема кристаллического счётчика, работающего в импульсном режиме
Кристаллическое поле
Кристалли'ческое по'ле, внутрикристаллическое поле, электрическое поле, существующее внутри кристаллов. Реже К. п. называют также образующееся внутри некоторых кристаллов магнитное поле. На коротких (порядка межатомных) расстояниях
Понятием К. п. пользуются при расчётах энергетического спектра парамагнитных ионов в ионных кристаллах и комплексных соединениях. В этом случае электрическое К. п. называют полем лигандов. К. п. называется слабым средним или сильным, если энергия взаимодействия электронов парамагнитного иона с К. п. меньше, сравнима или больше энергии спин-орбитального взаимодействия или электростатического взаимодействия электронов между собой. Для расчётов К. п. часто пользуются приближением точечных зарядов, когда реальные размеры ионов, атомов или их групп не учитываются и они рассматриваются как точечные заряды или электрические диполи, находящиеся в узлах кристаллической решётки. Потенциал К. п. обладает симметрией, определяющейся симметрией кристаллов. Величина и симметрия электрических К. п. в данной точке кристалла зависят от симметрии окружения этой точки и от деформаций в образце, возникающих, например, под влиянием внешних воздействий, от наличия примесей, дефектов и электрической поляризации кристалла. К. п. непрерывно колеблется в небольших пределах относительно своего среднего значения в соответствии с колебаниями кристаллической решётки.
Электрическое К. п. исследуют оптическими и радиоспектроскопическими методами [электронный парамагнитный резонанс (ЭПР), ядерный магнитный резонанс (ЯМР) и ядерный квадрупольный резонанс (ЯКР)]. Для оценки величины и определения локальной симметрии К. п. оптическими методами и методом ЭПР в диамагнитный кристалл (матрицу) часто вводят небольшие количества парамагнитных ионов, которые используются в качестве «атомных зондов». Исследование величины и симметрии К. п. позволяет изучить структуру твёрдых тел и энергию взаимодействия ионов с кристаллическим окружением. Такие диамагнитные матрицы с примесью парамагнитных ионов являются основой твердотельных лазерови квантовых усилителей СВЧ.
Магнитные К. п., значительные по величине, возникают в кристаллах, содержащих парамагнитные ионы и атомы. Различают сверхтонкие и дипольные магнитные К. п. Сверхтонкие поля (105—106э) обусловлены т. н. сверхтонким взаимодействием магнитных моментов ядер и их электронного окружения и наблюдаются в основном на ядрах магнитных ионов. Дипольные магнитные поля создаются в окружающем пространстве парамагнитными ионами как и обычными магнитными диполями. Наибольшие значения дипольных полей 103—104э, на расстояниях от магнитного иона ~10– 8см. Эти значения полей характерны для магнитоупорядоченных кристаллов. В др. случаях магнитные поля быстро флуктуируют под действием тепловых колебаний и их средние значения близки к нулю. Магнитные К. п. в кристаллах исследуются методом ЯМР и с помощью Мёссбауэра эффекта.
Лит.: Бальхаузен К., Введение в теорию поля лигандов, пер. с англ., М., 1964; Вонсовский С. В., Магнетизм, М., 1971; Туров Е. А., Петров М. П., Ядерный магнитный резонанс в ферро- и антиферро-магнетиках, М., 1969.
М. П. Петров.
Кристаллогидраты
Кристаллогидра'ты, кристаллы, включающие молекулы воды. Многие соли, а также кислоты и основания выпадают из водных растворов в виде К. Типичными К. являются многие природные минералы, например гипс CaSO4·2H2O, карналлит MgCl2·KCl·6H2O.
Кристаллизационная вода обычно может быть удалена нагреванием, при этом разложение К. часто идёт ступенчато; так, медный купорос CuSO4·5H2O (синий) выше 105 °С переходит в CuSO4·5H2O (голубой) и CuSO4·H2O (белый); полное обезвоживание происходит выше 250°С. Однако некоторые соединения (например, BeC2O4·H2O) устойчивы только в форме К. и не могут быть обезвожены без разложения. См. также Вода, Минерал.Кристаллографии институт
Кристаллогра'фии институ'т им. А. В. Шубникова АН СССР, научно-исследовательский институт, занимающийся исследованием структуры, физических свойств и образования кристаллов. Создан в Москве в 1943 на базе Лаборатории кристаллографии АН СССР, организованной в 1938. Основателем и первым директором К. и. был академик А. В. Шубников; со дня основания К. и. в нём работает академик Н. В. Белов. С 1962 директор К. и. член-корреспондент АН СССР Б. К. Вайнштейн.
К. и. внёс большой вклад в развитие теории симметрии кристаллов (теория антисимметрии и цветной симметрии), разработку теории структурного анализа кристаллов, создание структурной электронографии, развитие теории рассеяния рентгеновских лучей и электронов в кристаллах, автоматизацию решения структур. В К. и. выполнены исследования и обобщения в области кристаллохимии силикатов, полупроводниковых соединений, структуры биологических макромолекул, изучен ряд оптических, механических, сегнето- и фотоэлектрических свойств кристаллов, проведены исследования реальной структуры кристаллов и работы по теории дислокаций. Открыт электрический рельеф поверхности кристаллов.
В К. и. выполнены фундаментальные исследования роста кристаллов, в частности открыт спиральный рост, изучено зародышеобразование, развита теория роста и статистической кинетики кристаллизации. Созданы новые методики синтеза кристаллов. Работы К. и. и его дочерних предприятий привели к возникновению в стране промышленности монокристаллов, необходимых для развития радио-, квантовой и полупроводниковой электроники, оптики, акустики, прецизионного приборостроения и т. д. К. и. и его специальное конструкторское бюро разработали и внедрили в промышленность уникальную кристаллизационную аппаратуру, автоматические дифрактометры и др. приборы.
Институт награжден орденом Трудового Красного Знамени (1969).
Б. К. Вайнштейн.
Кристаллография
Кристаллогра'фия (от кристаллы и ...графия), наука о кристаллах и кристаллическом состоянии вещества. Изучает симметрию, строение, образование и свойства кристаллов. К. зародилась в древности в связи с наблюдениями над природными кристаллами, имеющими естественную форму правильных многогранников. К. как самостоятельная наука существует с середины 18 в. В 18—19 вв. К. развивалась в тесной связи с минералогией как дисциплина, устанавливающая закономерности огранки кристаллов (Р. Аюи, 1784). Была развита теория симметрии кристаллов — их внешних форм (А. В. Гадолин, 1867) и внутреннего пространственного строения (Е. С. Федоров, 1890; А. Шёнфлис, 1891). Совокупность методов описания кристаллов и установленные закономерности составляют содержание геометрической К.
На основе геометрической К. возникла гипотеза об упорядоченном, трёхмерно-периодическом расположении в кристалле составляющих его частиц, в современном понимании — атомов и молекул, которые образуют кристаллическую решётку. Открытие дифракции рентгеновских лучейв кристаллах экспериментально подтвердило их периодическое решётчатое строение. Первые конкретные рентгенографические расшифровки атомной структуры кристаллов (NaCl, алмаз, ZnS и др.) были осуществлены начиная с 1913 У. Г. Брэггоми У. Л. Брэггом. Изучение прохождения света через кристаллы (см. Кристаллооптика) позволило сформулировать закономерности анизотропии (неравноценности по направлениям) свойств кристаллов.