Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (МА)
Шрифт:

Применение магнитных полей в науке и технике. М. п. обычно подразделяют на слабые (до 500 гс ), средние (500 гс — 40 кгс ), сильные (40 кгс — 1 Мгс ) и сверхсильные (свыше 1 Мгс ). На использовании слабых и средних М. п. основана практически вся электротехника, радиотехника и электроника. В научных исследованиях средние М. п. нашли применение в ускорителях заряженных частиц , в Вильсона камере , искровой камере , пузырьковой камере и других трековых детекторах ионизующих частиц, в масс-спектрометра х, при изучении действия М. п. на живые организмы и т.д. Слабые и средние М. п. получают при помощи магнитов постоянных , электромагнитов, неохлаждаемых соленоидов, магнитов сверхпроводящих .

М. п. до ~500 кгс широко применяются в научных и прикладных целях: в физике твёрдого тела для изучения энергетических спектров электронов в металлах, полупроводниках и сверхпроводниках; для исследования ферро- и антиферромагнетизма, для удержания плазмы в МГД-генераторах

и двигателях, для получения сверхнизких температур (см. Магнитное охлаждение ), в электронных микроскопах для фокусировки пучков электронов и т.д. Для получения сильных М. п. применяют сверхпроводящие соленоиды (до 150—200 кгс , рис. 2 ), соленоиды, охлаждаемые водой (до 250 кгс , рис. 3 ), импульсные соленоиды (до 1,6 Мгс , рис. 4 ). Силы, действующие на проводники с током в сильных М. п., могут быть очень велики (так, в полях ~ 250 кгс механические напряжения достигают 4·108 н/м2 , то есть предела прочности меди). Эффект давления М. п. учитывают при конструировании электромагнитов и соленоидов, его используют для штамповки изделий из металла. Предельное значение поля, которое можно получить без разрушения соленоида, не превышает 0,9 Мгс.

Сверхсильные М. п. используют для получения данных о свойствах веществ в полях свыше 1 Мгс и при сопутствующих им давлениях в десятки млн. атмосфер. Эти исследования позволят, в частности, глубже понять процессы, происходящие в недрах планет и звёзд. Сверхсильные М. п. получают методом направленного взрыва (рис. 5 ). Медную трубу, внутри которой предварительно создано сильное импульсное М. п., радиально сжимают давлением продуктов взрыва. С уменьшением радиуса R трубы величина М. п. в ней возрастает ~ 1/R2 (если магнитный поток через трубу сохраняется). М. п., получаемое в установках подобного типа (так называемых взрывомагнитных генераторах), может достигать нескольких десятков Мгс. К недостаткам этого метода следует отнести кратковременность существования М. п. (несколько мксек ), небольшой объём сверхсильного М, п. и разрушение установки при взрыве.

Лит.: Ландау Л. Д. и Лифшиц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); Тамм И. Е., Основы теории электричества, 8 изд., М., 1966; Парселл Э., Электричество и магнетизм, перевод с английского, М., 1971 (Берклеевский курс физики, т. 2); Карасик В. Р., Физика и техника сильных магнитных полей, М., 1964; Монтгомери Б., Получение сильных магнитных полей с помощью соленоидов, перевод с английского, М., 1971; Кнопфель Г., Сверхсильные импульсные магнитные поля, перевод с английского, М., 1972; Кольм Г., Фриман А., Сильные магнитные поля, «Успехи физических наук», 1966, т. 88, в. 4, с. 703; Сахаров А. Д., Взрывомагнитные генераторы, там же, с. 725; Биттер Ф., Сверхсильные магнитные поля, там же, с. 735; Вайнштейн С. И., Зельдович Я. Б., О происхождении магнитных полей в астрофизике, там же, 1972, т. 106, в. 3.

Л. Г. Асламазов, В. Р. Карасик, С. Б. Пикельнер.

Рис. 4. Модель импульсного одновиткового соленоида (длина 10 мм , диаметр отверстия 2 мм ). Источник питания — батарея конденсаторов на 2,4 кдж . Получаемые поля — до 1,6 Мгс .

Рис. 3. Схематический разрез водоохлаждаемого соленоида на 250 кгс (движение воды показано стрелками), 1-я секция имеет массу 2 кг , потребляет мощность 0,4 Мвт и создаёт поле Bmax ~ 45 кгс , 2-я секция — 16 кг, 2 Мвт и 65 кгс , 3-я секция — 1250 кг , 12 Мвт и 140 кгс .

Рис. 1. a — действие однородного постоянного магнитного поля на магнитную стрелку, виток с током I и атомный диполь (е — электрон атома); б — действие однородного постоянного магнитного поля на свободно движущиеся электрические заряды q (их траектория в общем случае имеет вид спирали); в — разделение пучка магнитных диполей в неоднородном магнитном поле; г — возникновение тока индукции в витке при усилении внешнего магнитного поля В (стрелками показано направление тока индукции и создаваемого магнитного поля Винд ). Здесь pт — магнитный момент, q — электрический заряд, v — скорость заряда.

Рис. 5. Взрывомагнитный генератор. Первичное импульсное поле создаётся разрядом батареи конденсаторов. Когда поле достигает максимальной величины, осуществляется взрыв (ВВ — взрывчатое вещество), приводящий к резкому возрастанию поля в медной трубе («ловушке» магнитного поля). Тригер применялся для синхронизации первичного импульсного магнитного поля и детонации взрывчатого вещества.

Рис. 2. Сверхпроводяший соленоид с обмоткой из сплава Nb — Zr на 30 кгс (рабочий объём диаметром 32 мм находится при комнатной температуре): 1 — соленоид; 2 — жидкий гелий; 3 — жидкий азот; 4 — азотный экран; 5 — кожух; 6 — заливная горловина.

Магнитное поле Земли

Магни'тное по'ле Земли' , см. в статье Земной магнетизм .

Магнитное последействие

Магни'тное последе'йствие, то же, что магнитная вязкость .

Магнитное сопротивление

Магни'тное сопротивле'ние, характеристика магнитной цепи , М. с. Rm равно отношению магнитодвижущей силыF , действующей в магнитной цепи, к созданному в цепи магнитному потоку Ф. М. с. однородного участка магнитной цепи может быть вычислено по формуле Rm = l / mmS , где l и S — длина и поперечное сечение участка магнитной цепи, m — относительная магнитная проницаемость материала

цепи, mмагнитная постоянная. В случае неоднородной магнитной цепи (состоящей из однородных последовательных участков с различными l , S , m) её М. с. равно сумме Rm однородных участков. Расчёт М. с. по приведённой формуле является приближённым, так как формула не учитывает: «магнитные утечки» (рассеяние магнитного потока в окружающем цепь пространстве), неоднородности магнитного поля в цепи, нелинейную зависимость М. с. от поля. В переменном магнитном поле М. с. — комплексная величина, так как в этом случае и зависит от частоты электромагнитных колебаний. Единицей М. с. в Международной системе единиц служит ампер (или ампер-виток) на вебер (а/вб ), в СГС системе единицгильберт на максвелл (гб/мкс ). 1 а/вб = 4p·10– 9 гб/мксм » 1,2566·10– 8гб/мкс.

Магнитное старение

Магни'тное старе'ние, см. Старение магнитное .

Магнитно-жёсткие материалы

Магни'тно-жёсткие материа'лы, то же, что магнитно-твёрдые материалы.

Магнитно-мягкие материалы

Магнитно-мягкие материалы , магнитные материалы , которые намагничиваются до насыщения и перемагничиваются в относительно слабых магнитных полях напряжённостью Н ~ 8—800 а/м (0,1—10 э ). При температурах ниже Кюри точкиармко-железа , например, до 768 °С) М.-м. м. спонтанно намагничены, но внешне не проявляют магнитных свойств, так как состоят из хаотически ориентированных намагниченных до насыщения областей (доменов ). М.-м. м. характеризуются высокими значениями магнитной проницаемости — начальной ma ~ 102 —105 и максимальной mmax ~ 103 —106 . Коэрцитивная сила Hc М.-м. м. колеблется от 0,8 до 8 а/м (от 0,01 до 0,1 э ), а потери на магнитный гистерезис очень малы ~ 1—103дж/м2 (10—104 эрг/см2 ) на один цикл перемагничивания. Способность М.-м. м. намагничиваться в слабых магнитных полях обусловлена низкими значениями энергии магнитной кристаллической анизотропии, а у некоторых из них (например, у М.-м. м. на основе Fe — Ni, у некоторых ферритов ) также низкими значениями магнитострикции . Это связано с тем, что намагничивание происходит в результате смещения границ между доменами, а также вращения вектора намагниченности доменов. Подвижность границ, способствующая намагничиванию, снижается в случае присутствия в материале различных неоднородностей и напряжений, изменяющих энергию границ при их смещении. Поэтому свойствами М.-м. м. обладают также магнитные материалы, имеющие значительную энергию магнитной кристаллической анизотропии, но в которых отсутствуют (вернее, присутствуют в малых количествах) вредные примеси внедрения (углерод, азот, кислород и другие), дислокации и другие дефекты, искажающие кристаллическую решётку, а также включения в виде других фаз или пустот размером существенно больше параметров решётки. Однако процесс вращения вектора намагниченности в таких материалах требует приложения более сильных полей. Получение таких малодефектных материалов связано с большими технологическими трудностями. К М.-м. м. принадлежат ряд сплавов (например, перминвары) и некоторые ферриты с малой энергией магнитной кристаллической анизотропии, но с хорошо выраженной одноосной анизотропией, которая формируется при отжиге материала в магнитном поле. Некоторые М.-м. м. (например, пермендюр ) имеют слабую анизотропию, но большие значения магнитострикции.

По назначению М.-м. м. подразделяют на 2 группы: материалы для техники слабых токов и электротехнической стали. Важнейшими представителями М.-м. м., применяемых в технике слабых токов, являются бинарные и легированные сплавы на основе Fe — Ni (пермаллои ), имеющие низкую Hc » 0,01 э и очень высокие µa (до 105 ) и µmax (до 106 ). К этой же группе относятся сплавы на основе Fe — Со (например, пермендюр), которые среди М.-м. м. обладают наивысшими точкой Кюри (950—980 °С) и значением магнитной индукции насыщения Bs , достигающей 2,4· 104гс (2,4 тл ), а также сплавы Fe — Al и Fe — Si — Al. Для работы при частотах до 105гц используются сплавы на Fe — Со — Ni основе с постоянной магнитной проницаемостью, достигаемой термической обработкой образцов в поперечном магнитном поле, которое формирует индуцированную одноосевую анизотропию (кристаллическая магнитная анизотропия при этом должна быть как можно меньше). Постоянство магнитной проницаемости (в пределах 15%) сохраняется при индукциях до 8000 гс и обеспечивается тем, что при намагничивании таких М.-м. м. процесс вращения является доминирующим. В области частот 104 —108гц нашли применение магнитодиэлектрики , представляющие собой тонкие порошки карбонильного железа, пермаллоя или альсифера, смешанные с кем-либо диэлектрической связкой.

Широко применяются в технике слабых токов смешанные ферриты (например, соединение из цинкового и никелевого ферритов), а также ферриты-гранаты, кристаллическая структура которых одинакова с природными гранатами . Для них характерно исключительно высокое электрическое сопротивление и практическое отсутствие скин-эффекта . Ферриты-гранаты применяются при очень высоких частотах (если невелики диэлектрические потери).

Магнитно-мягкие сплавы выплавляют в металлургических печах, для придания необходимой формы слитки подвергают ковке или прокатке. Ферриты получают спеканием окислов металлов при высоких температурах, изделия прессуют из порошка (для чего феррит размалывают) и обжигают. Из магнитно-мягких сплавов изготавливают сердечники трансформаторов (микрофонных, выходных, переходных, импульсных и других), магнитные экраны, элементы памяти ЭВМ, сердечники головок магнитной записи; из ферритов, кроме того, — магнитные антенны, волноводы и др.

Поделиться с друзьями: