Большая Советская Энциклопедия (МИ)
Шрифт:
Количественный (см. также Количественный анализ ) М. а. органических и неорганических веществ может быть (аналогично макрохимическому анализу) гравиметрическим, титриметрическим, фотометрическим. В органических веществах методами количественного М. а. определяют содержание отдельных элементов (элементный анализ), содержание функциональных групп (функциональный анализ), а также молекулярную массу. Гравиметрические определения выполняют в основном при М. а. органических веществ, используя микровесы с чувствительностью 10– 6г. В органических М. а. наряду с гравиметрическим широко применяется метод газовой хроматографии. Титриметрические методы в М. а. занимают ведущее положение как наиболее простые и высокоточные; здесь используют микробюретки с отмериваемым объёмом до 10– 3мл и малой ёмкости сосуды для титрования; предпочтение отдаётся электрохимическими методам титрования, прежде всего кулонометрическому. Существенное практическое значение приобрели фотометрические микроопределения, в том числе для регистрации точки эквивалентности при титровании с окрашенным индикатором.
Главным направлением современного развития М. а. является преимущественное использование физико-химических методов. При исследовании сложных по составу
Лит.: Маляров К. Л., Качественный микрохимический анализ, М., 1951; Столяров К. П., Методы микрохимического анализа, Л., 1960; Файгль Ф., Капельный анализ органических веществ, пер. с англ., М., 1962; Климова В. А., Основные микрометоды анализа органических соединений, М., 1967; Коренман И. М., Количественный микрохимический анализ, М. — Л., 1949; Алимарин И. П., Фрид Б. И., Количественный микрохимический анализ минералов и руд, М., 1961; Коренман И. М., Микрокристаллоскопия, М., 1955; Руководство по газовой хроматографии, пер. с нем., под ред. А. А. Жуховицкого, М., 1969; Weisz Н., Microanaivsis by the ring-oven technique, 2 ed., Oxf., 1970.
М. Н. Петракова.
Микроцефалия
Микроцефа'лия (от микро... и греч. kephale — голова), значительное уменьшение размеров черепа и соответственно головного мозга при нормальных размерах других частей тела. М. сопровождается умственной недостаточностью — от нерезко выраженной имбецильности до идиотии (см. Олигофрения ). Причины М.: вирусные заболевания, перенесённые матерью в первые 3 мес беременности, токсоплазмоз ; иногда причина М. — внутриутробный менингоэнцефалит плода. Прогноз при М. неблагоприятный.
Микроэволюция
Микроэволю'ция , совокупность пусковых эволюционных процессов, протекающих внутри вида, в пределах отдельных или смежных популяций. При этом популяции рассматриваются как элементарные эволюционные структуры; мутации , лежащие в основе наследственной изменчивости, — как элементарный эволюционный материал, а мутационный процесс, волны жизни , разные формы изоляции и естественный отбор — как элементарные эволюционные факторы. Под давлением этих факторов происходит изменение генотипического состава популяции — ведущий пусковой механизм эволюционного процесса. Ранее термин «М.» употреблялся некоторыми эволюционистами для обозначения изменчивости и формообразования внутри вида и противопоставлялся макроэволюции . Современное учение о М. развилось после синтеза генетики с классическим дарвинизмом , начало чему было положено работами советского генетика С. С. Четверикова (1926) и английского генетика Р. А. Фишера (1930). По современным воззрениям (иногда называемым «синтетической теорией эволюции»), все основные пусковые механизмы эволюции (на всех её уровнях) протекают внутри видов, т. е. на микроэволюционном уровне. М. завершается видообразованием , т. е. возникновением видов, репродуктивно изолированных от исходных и других близких видов. Поэтому нет принципиальных различий между М. и макроэволюцией, различающихся лишь временными и пространственными масштабами. Для успеха исследований на микроэволюционном уровне необходим синтез популяционно-генетических опытов, количественных описаний процессов популяционной динамики и экологии, изучения этологических явлений, аналитического применения теоретических положений генетики и, наконец, построения математических моделей внутрипопуляционных и межпопуляционных процессов.
Лит.: Четвериков С. С., О некоторых моментах эволюционного процесса с точки зрения современной генетики, «Журнал экспериментальной биологии», 1926, т. 2, в. 1; Тимофеев-Ресовский Н. В., Микроэволюция, «Ботанический журнал», 1958, т. 43, № 3; Шмальгаузен И. И., Факторы эволюции, 2 изд., М., 1968; Майр Э., Зоологический вид и эволюция, пер. с англ., М., 1968; его же, Принципы зоологической систематики, пер. с англ., М., 1971; Тимофеев-Ресовский Н. В., Воронцов Н. Н., Яблоков А. В., Краткий очерк теории эволюции, М., 1969; Fisher R. A., The genetical theory of natural selection, Oxf., 1930; Huxley J., Evolution. The modern synthesis, 2 ed., L., 1963.
Н. В. Тимофеев-Ресовский.
Микроэлектродная техника
Микроэлектро'дная те'хника в физиологии, применяется для измерения электрических, концентрационных и окислительных потенциалов различных клеток и их частей, а также для местного, строго ограниченного воздействия на них током и различными веществами. Микроэлектроды введены в 1946 американскими учёными Р. Джерардом и Дж. Лингом и стали применяться для отведения электрических потенциалов сначала от одиночного мышечного волокна, а затем и от отдельной клетки. В лабораторных исследованиях используются металлические микроэлектроды с диаметром кончика порядка 1 мкм, заполненные раствором электролита стеклянные микропипетки с диаметром кончика меньше 1 мкм и некоторые другие типы микроэлектродов. Для подведения их к объекту применяют микроманипуляторы . Околоклеточное отведение позволяет регистрировать токи действия, внутриклеточное отведение, кроме того — уровень мембранного потенциала и постсинаптические потенциалы (см. Биоэлектрические потенциалы ). Регистрация биопотенциалов с помощью микроэлектродов требует специальной усилительной техники. М. т. позволила исследовать электрические явления в нервных клетках, благодаря чему были сделаны фундаментальные открытия: раскрыты механизмы синаптической передачи и генерации токов действия, а также получены сведения о временном и пространственном распределении нервных импульсов, кодирующем передачу информации в нервной системе.
Лит.: Костюк П. Г., Микроэлектродная техника, К., 1960; Glass microelectrodes, N. Y., 1969.
О. З. Бомштейн.
Микроэлектромашина
Микроэлектромаши'на, электрическая машина мощностью от долей вт до нескольких сотен вт, с частотой вращения вала (ротора) до 30 000 об/мин.
Различают М. постоянного и переменного тока и универсальные. М. могут иметь различное конструктивное исполнение в зависимости от назначения и условий их эксплуатации. В устройствах автоматики, в кино-, фото- и радиоаппаратуре широко применяют микропривод , а в системах с элементами обратной связи — тахогенераторы , которые используются также в дифференциаторах и интеграторах. В системах синхронизации применяют реактивные электродвигатели с сосредоточенной статорной обмоткой и сельсины ; в гироскопах и радиолокационных установках, а также в системах следящего электропривода широко распространены индукторные генераторы . Шаговые электродвигатели чаще всего применяют для привода механизмов, имеющих стартстопное движение, или механизмов с непрерывным движением, в которых управляющее воздействие задаётся последовательностью электрических импульсов, например в приводах станков с программным управлением и т. д. В бытовых электроприборах используют универсальные коллекторные электродвигатели.Лит.: Армейский Е. В., Фалк Г. Б., Электрические микромашины, М., 1968; Брускин Д. Э., Зорохович А. Е., Хвостов В. С., Электрические машины и микромашины, М., 1971.
Ю. М. Иньков.
Микроэлектроника
Микроэлектро'ника, область электроники , занимающаяся созданием электронных функциональных узлов, блоков и устройств в микроминиатюрном интегральном исполнении. Возникновение М. в начале 60-х гг. 20 в. было вызвано непрерывным усложнением функций электронной аппаратуры, увеличением габаритов и повышением требований к её надёжности. Применение в отдельных устройствах нескольких тысяч и десятков тысяч самостоятельно изготовленных электронных ламп, транзисторов, конденсаторов, резисторов, трансформаторов и др., сборка их путём соединения выводов пайкой или сваркой делали аппаратуру громоздкой, трудоёмкой в изготовлении, недостаточно надёжной в работе, требующей значительного потребления электроэнергии и т. д. Поиски путей устранения этих недостатков привели к появлению новых конструктивно-технологических направлений создания электронной аппаратуры: печатного монтажа , модулей и микромодулей , а затем и интегральных схем (на базе групповых методов изготовления).
Используя достижения в области физики твёрдого тела и особенно физики полупроводников , М. решает указанные проблемы не путём простого уменьшения габаритов электронных элементов, а созданием конструктивно, технологически и электрически связанных электронных структур — функциональных блоков и узлов. В них согласно принципиальной схеме конструктивно объединено большое число микроминиатюрных элементов и их электрических соединений, изготавливаемых в едином технологическом процессе. Такой процесс, ставший возможным благодаря предложенному в 1959 планарному процессу получения полупроводниковых (ПП) приборов, предполагает применение исходной общей заготовки (обычно в виде пластины из ПП материала) для большого числа (~ 100—2000) одинаковых электронных функциональных узлов, одновременно проходящих последовательный ряд технологических операций в идентичных условиях (рис. 1 ). Т. о., каждый такой узел получают не в результате сборки из дискретных элементов, а в итоге поэтапной групповой интегральной обработки многих одинаковых узлов на одной пластине. В процессе обработки отдельным участкам ПП материала придаются свойства различных элементов и их соединений, в целом образующих изготавливаемый узел. Полученный микроминиатюрный узел, отделённый от пластины и помещенный в корпус, называется интегральной микросхемой, или интегральной схемой (ИС). В связи с этим в М. изменяется само понятие элемента. Практически элементом становится ИС как неделимое изделие, состоящее из 5 элементов и более. ИС характеризуется уровнем интеграции — числом простейших элементов в ней.
В силу специфики — исключительно высокой точности проведения технологических процессов и большого числа операций — для изготовления микроэлектронных изделий требуются разнообразные высококачественные ПП и другие материалы и прецизионное технологическое оборудование. Базовым ПП материалом служит монокристаллический кремний. Технологическое оборудование должно обеспечить изготовление элементов ИС с точностью их размеров в пределах единиц и долей микрометра.
В соответствии с используемыми конструктивно-технологическими и физическими принципами в М. может быть выделено несколько взаимно перекрывающихся и дополняющих друг друга направлений: интегральная электроника , вакуумная микроэлектроника, оптоэлектроника и функциональная электроника . Наибольшее развитие получила интегральная электроника. С её появлением открылись широкие возможности микроминиатюризации радиоэлектронной аппаратуры, начался процесс создания аппаратуры третьего поколения — с применением ИС (первое поколение — на электровакуумных приборах, второе — на ПП приборах). Область применения ИС простирается от вычислительной техники и космических систем до бытовой аппаратуры. Темпы роста производства ИС исключительно высоки. Мировая промышленность в 1972 выпустила более 1 млрд. ИС.
На базе групповых методов изготовления, путём формирования необходимого количества электронных элементов и электрических связей между ними в объёме одного ПП кристалла были впервые созданы (1959—61) полупроводниковые ИС. В их производстве наиболее распространена планарно-эпитаксиальная технология, заимствованная из производства дискретных ПП приборов (см. Полупроводниковая электроника ) и отличающаяся от него лишь дополнительными операциями по электрической изоляции отдельных элементов на ПП пластине и соединению всех элементов в кристалле в единый функциональный узел. Для изоляции используются методы создания вокруг элемента области ПП материала с противоположным типом проводимости (при этом образуется изолирующий р-n– переход, см. Электронно-дырочный переход ) или слоя диэлектрика, например двуокиси кремния. Основные технологические операции планарно-эпитаксиальной технологии: механическая и химическая обработка ПП пластин; эпитаксиальное наращивание на пластине слоя с необходимыми электрофизическими свойствами (типом проводимости, удельным сопротивлением и т. д.); фотолитография ; легирование (например, посредством диффузии или ионного внедрения ); нанесение металлических плёнок — электродов, соединительных дорожек, контактных площадок (рис. 2 ).