Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (МО)
Шрифт:

При DEэл = 0 и DEкол = 0 получаются чисто вращательные М. с., состоящие из отдельных линий. Они наблюдаются в поглощении в далёкой (сотни мкм ) ИК-области и особенно в микроволновой области, а также в спектрах комбинационного рассеяния. Для двухатомных и линейных многоатомных молекул (а также для достаточно симметричных нелинейных многоатомных молекул) эти линии равно отстоят (в шкале частот) друг от друга с интервалами Dn = 2B в спектрах поглощения и Dn = 4B в спектрах комбинационного рассеяния.

Чисто вращательные спектры изучают в поглощении в далёкой ИК-области при помощи ИК-спектрометров со специальными дифракционными решётками (эшелеттами) и Фурье-спектрометров, в микроволновой области при помощи микроволновых (СВЧ) спектрометров (см. Микроволновая спектроскопия ), а также в комбинационном рассеянии при помощи светосильных спектрографов.

Методы молекулярной спектроскопии, основанные на изучении М. с., позволяют решать разнообразные задачи химии, биологии и др. наук (например, определять состав нефтепродуктов, полимерных веществ и т. п.). В химии по М. с. изучают

структуру молекул. Электронные М. с. дают возможность получать информацию об электронных оболочках молекул, определять возбуждённые уровни и их характеристики, находить энергии диссоциации молекул (по схождению колебательных уровней молекулы к границам диссоциации). Исследование колебательных М. с. позволяет находить характеристические частоты колебаний, соответствующие определённым типам химических связей в молекуле (например, простых двойных и тройных связей С—С, связей С—Н, N—Н, О—Н для органических молекул), различных групп атомов (например, CH2 , CH3 , NH2 ), определять пространственную структуру молекул, различать цис- и транс-изомеры. Для этого применяют как инфракрасные спектры поглощения (ИКС), так и спектры комбинационного рассеяния (СКР). Особенно широкое распространение получил метод ИКС как один из самых эффективных оптических методов изучения строения молекул. Наиболее полную информацию он даёт в сочетании с методом СКР. Исследование вращательных М. с., а также вращательной структуры электронных и колебательных спектров позволяет по найденным из опыта значениям моментов инерции молекул [которые получаются из значений вращательных постоянных, см. (7)] находить с большой точностью (для более простых молекул, например H2 O) параметры равновесной конфигурации молекулы — длины связей и валентные углы. Для увеличения числа определяемых параметров исследуют спектры изотопических молекул (в частности, в которых водород заменен дейтерием), имеющих одинаковые параметры равновесных конфигураций, но различные моменты инерции.

В качестве примера применения М. с. для определения химического строения молекул рассмотрим молекулу бензола C6 H6 . Изучение её М. с. подтверждает правильность модели, согласно которой молекула плоская, а все 6 связей С—С в бензольном кольце равноценные и образуют правильный шестиугольник (рис. 2 , б), имеющий ось симметрии шестого порядка, проходящую через центр симметрии молекулы перпендикулярно её плоскости. Электронный М. с. поглощения C6 H6 состоит из нескольких систем полос, соответствующих переходам из основного чётного синглетного уровня на возбуждённые нечётные уровни, из которых первый является триплетным, а более высокие — синглетными (рис. 5 ). Наиболее интенсивна система полос в области 1840

 (E5E1 = 7,0 эв ), наиболее слаба система полос в области 3400
 (E2E1 = 3,8 эв ), соответствующая синглетно-триплетному переходу, запрещенному приближёнными правилами отбора для полного спина. Переходы соответствуют возбуждению т. н. p-электронов, делокализованных по всему бензольному кольцу (см. Молекула ); полученная из электронных молекулярных спектров схема уровней рис. 5 находится в согласии с приближёнными квантовомеханическими расчётами. Колебательные М. с. C6 H6 соответствуют наличию в молекуле центра симметрии — частоты колебаний, проявляющиеся (активные) в ИКС, отсутствуют (неактивные) в СКР и наоборот (т. н. альтернативный запрет). Из 20 нормальных колебаний C6 H6 4 активны в ИКС и 7 активны в СКР, остальные 11 неактивны как в ИКС, так и в СКР. Значения измеренных частот (в см– 1 ): 673, 1038, 1486, 3080 (в ИКС) и 607, 850, 992, 1178, 1596, 3047, 3062 (в СКР). Частоты 673 и 850 соответствуют неплоским колебаниям, все остальные частоты — плоским колебаниям. Особо характерны для плоских колебаний частота 992 (соответствующая валентному колебанию связей С—С, состоящему в периодическом сжатии и растяжении бензольного кольца), частоты 3062 и 3080 (соответствующие валентным колебаниям связей С—Н) и частота 607 (соответствующая деформационному колебанию бензольного кольца). Наблюдаемые колебательные спектры C6 H6 (и аналогичные им колебательные спектры C6 D6 ) находятся в очень хорошем согласии с теоретическими расчётами, позволившими дать полную интерпретацию этих спектров и найти формы всех нормальных колебаний.

Подобным же образом можно при помощи М. с. определять структуру разнообразных классов органических и неорганических молекул, вплоть до весьма сложных, например молекул полимеров.

Лит.: Кондратьев В. Н., Структура атомов и молекул, 2 изд., М., 1959; Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962; Герцберг Г., Спектры и строение двухатомных молекул, пер. с англ., М., 1949; его же, Колебательные и вращательные спектры многоатомных молекул, пер. с англ., М., 1949; его же, Электронные спектры и строение многоатомных молекул, пер. с англ., М., 1969; Применение спектроскопии в химии, под ред. В. Веста, пер. с англ., М., 1959.

М. А. Ельяшевич.

Рис. 4. Вращательное расщепление электронно-колебательной полосы 3805

 молекулы N2 .

Рис. 1. Схема уровней энергии двухатомной молекулы: а и б — электронные уровни; v ' и v '' — квантовые числа колебательных уровней. J ' и J '' — квантовые числа вращательных уровней.

Рис. 5.

Схема электронных уровней и переходов для молекулы бензола. Энергия уровней дана в эв . С — синглетные уровни; Т — триплетный уровень. Чётность уровня указана буквами g и u. Для систем полос поглощения указаны примерные области длин волн в
, более интенсивные системы полос обозначены более жирными стрелками.

Рис. 2. Равновесные конфигурации молекул: а — H2 O; б — CO2 ; в — C6 H6 ; г — CH4 . Числами указаны длины связей (в

) и величины валентных углов.

Рис. 3. Электронно-колебательный спектр молекулы N2 в близкой ультрафиолетовой области; группы полос соответствуют различным значениям Dv = v ' — v ''.

Молекулярный вес

Молекуля'рный вес, то же, что молекулярная масса .

Молекулярный генератор

Молекуля'рный генера'тор, устройство, в котором когерентные электромагнитные колебания генерируются за счёт вынужденных квантовых переходов молекул из исходного энергетического состояния в состояние с меньшей внутренней энергией (см. Когерентность , Квантовая электроника ). М. г. — первый квантовый генератор, созданный в 1954 Н. Г. Басовым и А. М. Прохоровым (СССР) и независимо от них Ч. Таунсом , Дж. Гордоном и Х. Цейгером (США). Оба варианта этого М. г. работали на молекулах аммиака NH3 и генерировали электромагнитные колебания с частотой 24840 Мгц (длина волны l = 1,24 см ).

Для возбуждения генерации когерентных колебаний необходимо выполнение двух основных условий: в рабочем объёме прибора количество частиц в исходном состоянии должно быть больше, чем в состоянии с меньшей внутренней энергией (инверсия населённостей ), должна быть обеспечена связь между частицами, излучающими в различные моменты времени (положительная обратная связь ). В М. г. первое условие осуществляется электростатической сортировкой пучка молекул, а обратная связь при помощи объёмного резонатора , настроенного на частоту, равную частоте излучения, сопровождающего переход молекулы из исходного энергетического состояния в конечное. Пучок молекул формируется при вылете молекул из источника в вакуум через узкие отверстия или капилляры (см. Молекулярные и атомные пучки ).

Электростатическая сортировка молекул по энергетическим состояниям в М. г. основана на том, что молекулы, обладающие электрическим дипольным моментом (например, молекулы NH3 ), пролетая через неоднородное электрическое поле, отклоняются этим полем от прямолинейного пути по-разному в зависимости от энергии (см. Штарка эффект ). В первом М. г. сортирующая система представляла собой квадрупольный конденсатор, состоящий из 4 параллельных стержней специальной формы, соединённых попарно с высоковольтным выпрямителем (рис. ). Электрическое поле такого конденсатора весьма неоднородно, что вызывает искривление траекторий молекул NH3 , летящих вдоль его оси. Свойства молекул NH3 таковы, что те из них, которые находятся в верхнем из используемой пары энергетических состояний, отклоняются к оси конденсатора и попадают внутрь объёмного резонатора. Молекулы, находящиеся в нижнем состоянии, отбрасываются в стороны и не попадают в резонатор. Отсортированный т. о. пучок содержит молекулы, находящиеся в верхнем энергетическом состоянии. Попадая внутрь резонатора, такие молекулы излучают под воздействием электромагнитного поля резонатора (вынужденное излучение). Излученные фотоны остаются внутри резонатора, усиливая его поле и увеличивая вероятность вынужденного излучения для молекул, пролетающих позже. Если интенсивность пучка активных молекул такова, что вероятность вынужденного излучения фотона больше, чем вероятности поглощения фотона в стенках резонатора, то возникает процесс самовозбуждения — быстро возрастает интенсивность электромагнитного поля резонатора на частоте перехода за счёт внутренней энергии молекул пучка. Это возрастание прекращается, когда поле в резонаторе достигает величины, при которой вероятность вынужденного испускания становится столь большой, что за время пролёта резонатора успевает испустить фотон как раз половина молекул пучка. При этом для пучка в целом вероятность поглощения становится равной вероятности вынужденного испускания (см. Насыщения эффект ). Мощность, генерируемая М. г. на пучке молекул NH3 , составляет 10– 8вт, стабильность частоты генерации в пределах 10– 7 —10– 11 .

В дальнейшем были созданы М. г. на ряде других дипольных молекул, работающие в диапазоне сантиметровых и миллиметровых волн, и квантовые генераторы на пучке атомов водорода, работающие на длине волны 21 см. Эти приборы, как и квантовые усилители радиодиапазона, иногда называют мазерами . Существует несколько конструктивных вариантов М. г., отличающихся устройством сортирующих систем, количеством резонаторов и т. п. К М. г. относят также квантовые генераторы, в которых инверсия населённости уровней молекул достигается не сортировкой, а другими способами, например воздействием вспомогательного электромагнитного поля (накачки), электрическим разрядом и др. В этом смысле к М. г. можно отнести и квантовые генераторы оптического диапазона (лазеры ), рабочим веществом которых служат молекулярные газы (см. Газовый лазер ).

Поделиться с друзьями: