Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (МЮ)
Шрифт:

М. М. Смирин.

Т. Мюнцер.

Мюнш Шарль

Мюнш (M"unch) Шарль (26.9.1891, Страсбург, — 6.11.1968, Ричмонд, США), французский дирижёр и скрипач. Был концертмейстером Страсбургского городского оркестра (1919) и оркестра Гевандхауза в Лейпциге (1923). С 1932 жил в Париже, где дебютировал как дирижёр. В 1935—38 руководил Парижским филармоническим оркестром, в 1937—46 — оркестром Общества Парижской консерватории. Первый исполнитель в освобождённом от немецко-фашистской оккупации Париже «Песни освобождения» Онеггера (1944) и 7-й симфонии Шостаковича (1945). С 1946 работал в США; в 1949—62 руководил Бостонским оркестром. В последующие годы вёл интенсивную деятельность как дирижёр-гастролёр: в 1956 и 1965 выступал в СССР. С 1967 возглавлял вновь созданный «Парижский оркестр». Яркая эмоциональность, глубокий интеллект, строгий вкус

и исключительное по точности дирижёрское мастерство сделали М. выдающимся интерпретатором многих музыкальных произведений. Пропагандист и первый исполнитель сочинений современных ему французских композиторов (А. Онеггер, А. Руссель, А. Дютийё, Ж. Ропарц и др.).

Соч. в рус. пер.: Я — дирижер, М., 1960.

Е. Я. Рацер.

Мюоний

Мюо'ний, частица, состоящая из положительного мюона (m+) и электрона). Обозначается m+е или Mu. Гипотеза о существовании М. была вы двинута в 1957 одновременно Л. Д. Ландау и А. Саламом. Строение М. аналогично атому водорода, от которого М. отличается заменой протона на m+. М. образуется при торможении m+ в веществе. При этом m+ присоединяет к себе электрон из оболочки атома, а атом становится положительным ионом. Например, m+ + Xe ® m+е + Xe+. Время жизни М. t = 2,2x10– 6сек; оно определяется временем жизни m+.

Поскольку m+ и е обладают собственными магнитными моментами (спинами), то в М. их спины могут быть направлены либо параллельно, либо антипараллельно друг другу. Энергия двух таких состояний различается на величину ~ 2x10– 5эв и между ними возможны квантовые переходы с излучением электромагнитных волн частотой 4463,16 Мгц. Наблюдение этих переходов и сравнение измеренной частоты излучения с теоретически предсказываемой является одним из самых точных методов проверки уравнений квантовой электродинамики.

Три четверти атомов М. образуется в состоянии с параллельными спинами m+ и е. Магнитный момент этих атомов М. примерно в 200 раз превышает магнитный момент m+ мезона, а частота прецессии такой системы в магнитном поле в 100 раз превышает частоту прецессии свободного m+. С такой же частотой меняется направление вылета позитронов, образующихся при распаде m+, входящего в состав М. (m+ ® e+ + ne +

). Это явление используют для наблюдения М. и исследования различных химических реакций с участием водорода. Так как М. можно рассматривать как лёгкий изотоп водорода, то в таких исследованиях он играет роль «меченого» атома водорода, за движением которого можно следить, наблюдая прецессию его спина в магнитном поле. Если М., подобно атому водорода, вступает в химическую реакцию, то связь между спинами мюона m+ и электрона е «разрывается» и вместо частоты прецессии М. наблюдается частота прецессии свободного m+. Таким способом удалось измерить скорости протекания многих химических реакций атомарного водорода с различными веществами.

Лит.: Хьюз В., Мюоний, «Успехи физических наук», 1968, т. 95, в. 3; Гольданский В. И., Фирсов В. Г., Химия новых атомов, «Успехи химии», 1971, т. 40, в. 8.

Л. И. Пономарёв.

Мюоны

Мюо'ны (старое название — m-мезоны), нестабильные элементарные частицы со спином1/2, временем жизни 2,2x10– 6сек и массой, приблизительно в 207 раз превышающей массу электрона. Существуют положительно заряженные (m+) и отрицательно заряженные (m) М., являющиеся частицей и античастицей по отношению друг к другу. М. относятся к классу лептонов, т. е. участвуют в электромагнитных и слабых взаимодействиях и не участвуют в сильных взаимодействиях.

Открытие мюонов и их источники. М. были впервые обнаружены в космических лучах в 1936 американскими физиками К. Андерсоном

и С. Неддермейером. Сначала М. пытались отождествить с частицей, которая, согласно гипотезе японского физика Х. Юкавы, является переносчиком ядерных сил. Однако такая частица должна была интенсивно взаимодействовать с атомными ядрами, тогда как опытные данные показывали, что М. слабо взаимодействует с веществом. Этот «парадокс» был разрешён в 1947 после открытия пи-мезона (p), обладающего свойствами частицы, предсказанной Юкавой, и распадающегося на М. и нейтрино.

Основным источником М. в космических лучах и на ускорителях заряженных частиц высоких энергий является распад p-мезонов (пионов), а также К-мезонов (каонов), интенсивно рождающихся при столкновениях сильно взаимодействующих частиц (адронов), например протонов (р) с ядрами:

p+(K+) ® m+ + nm, (1, а)

(здесь nm,

 — мюонные нейтрино и антинейтрино). Др. источники М. — рождение пар m+m фотонами (g) высоких энергий, электромагнитные распады мезонов типа r ® m+ + m, так называемые лептонные распады гиперонов, например L° ® р + m + nm и т. д. — играют, как правило, значительно меньшую роль.

В космических лучах на уровне моря М. образуют основную компоненту (~80%) всех частиц космического излучения. На современных ускорителях заряженных частиц высокой энергии получают пучки М. с интенсивностью 105—106 частиц в сек.

Спин nm, возникающего при распадах (1, а), ориентирован против направления своего импульса, а спин

 от распадов (1, б) — по направлению импульса. Отсюда на основании законов сохранения импульса и момента количества движения следует, что спин m+, рождающегося при распаде покоящихся p+ или К+, направлен против его импульса, а спин m — в направлении импульса (см. рис.).

Поэтому М. в зависимости от кинематических условий их образования и энергетического спектра пионов и каонов оказываются частично (или полностью) поляризованными в направлении импульса (m) или против него (m+).

Взаимодействие мюонов. Слабые взаимодействия М. вызывают их распад по схеме:

(где е+, е, ne,

 — позитрон, электрон, электронные нейтрино и антинейтрино соответственно); эти распады и определяют «время жизни» М. в вакууме. В веществе m «живёт» меньше: останавливаясь в веществе, он притягивается положительно заряженным ядром и образует так называемый мюонный атом, или m-мезоатом, — систему, состоящую из атомного ядра, m и электронной оболочки. В мезоатомах благодаря слабому взаимодействию может происходить процесс захвата m ядром:

m + ZA ® Z-1B + nm

(где Z — заряд ядра). Этот процесс аналогичен К- захвату электронов ядром и сводится к элементарному взаимодействию

m + p ® n + nm

(где n — нейтрон). Вероятность захвата m ядром растет для лёгких элементов пропорционально Z4 и при Z » 10 сравнивается с вероятностью распада m. В тяжёлых элементах «время жизни» останавливающихся m определяется в основном вероятностью их захвата ядрами и в 20—30 раз меньше их «времени жизни» в вакууме.

Из-за несохранения пространственной чётности в слабом взаимодействии при распаде (2, а) позитроны вылетают преимущественно в направлении спина m+, а электроны в распаде (2, б) — преимущественно в направлении, противоположном спину m (см. рис. к ст. Слабые взаимодействия). Поэтому, изучая асимметрию вылетов электронов или позитронов в этих распадах, можно определить направления спинов m и m+.

Поделиться с друзьями: