Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (ОП)
Шрифт:

Плодотворность классической электродинамической теории света Максвелла — Лоренца неоднократно подтверждалась и в дальнейшем, например в истолковании И. Е. Таммом и И. М. Франком (1937) эффекта Черенкова — Вавилова излучения (открытого в 1934), в выдвижении Д. Габором (1948) идеи голографии (с записью волнового поля в одной плоскости), в разработке оригинального направления трёхмерных голограмм, начало которому положили работы Ю. Н. Денисюка (1962) и т.д.

Несмотря на успехи электродинамические теории, выяснилось, что она явно недостаточна для описания процессов поглощения и испускания света. Особенно отчётливо это проявилось в парадоксальности выводов теории (противоречащих закону сохранения энергии) из анализа распределения по длинам волн теплового излучения (излучения абсолютно чёрного тела ). Рассматривая эту принципиальную проблему, М. Планк пришёл к заключению (1900), что элементарная колебательная система (атом, молекула) отдаёт энергию электромагнитному полю или получает её от него не непрерывно, а порциями, пропорциональными частоте колебаний, — квантами. Утверждение Планка противоречило классическим представлениям и перенесло идею прерывности (дискретности) на процессы испускания и поглощения света. Развитие идеи Планка не только дало удовлетворительное решение проблемы теплового излучения, но и заложило основы всей современной квантовой физики. Работы Планка и Эйнштейна (1905), который приписал квантам света — фотонам , кроме энергии, также импульс и массу, вернули О. многие черты корпускулярных представлений. Электромагнитное поле (его интенсивность) в квантовой О. определяет вероятность обнаружения фотона, а структура поля отражает

квантовую структуру ансамбля элементарных излучателей (атомов, молекул) и распределение актов излучения во времени. Т. о., при сохранении физического смысла поля фотоны, возникающие в актах испускания света и существующие, только двигаясь со скоростью света, приобрели черты материальных частиц. При поглощении фотона он перестаёт существовать, а поглотившая его система получает его энергию и импульс. Если же фотон не поглощается, взаимодействуя с частицей (например, свободным электроном), или он отражается от макроскопического тела (например, неподвижного или движущегося зеркала), он изменяет свою энергию и импульс (сохраняя абсолютную величину скорости) в соответствии с законами соударения двух материальных тел. Фотонные представления позволили Эйнштейну объяснить основные законы фотоэффекта , впервые исследованные А. Г. Столетовым в 1888—1890, и дать ясную трактовку фотохимических превращений. Они позволяют наглядно истолковать существование коротковолновой границы в тормозном излучении электронов (макс. энергия фотона равна энергии электрона), Комптона эффект (открытый в 1922), стоксовский сдвиг частоты излучения фотолюминесценции по отношению к частоте возбуждающего света, комбинационное рассеяние света (открытое в 1928 Л. И. Мандельштамом и Г. С. Ландсбергом и независимо Ч. В. Раманом ) и огромное число др. явлений взаимодействия света с веществом, известных ко времени формирования квантовой теории и открытых в последующие годы. Поэтому переход к квантовым представлениям был следующим существенным шагом в О., которую в её дальнейшем развитии нельзя рассматривать изолированно от квантовой физики вообще.

В современной О. квантовые представления не противополагаются волновым, а органически сочетаются в квантовой механике и квантовой электродинамике , Исключительное значение квантовая механика имеет для спектроскопии, позволившей получить обширные сведения о строении атомов, молекул и конденсированных сред, а также о протекающих в них процессах. Это стало возможным благодаря развитию квантовой теории в трудах Н. Бора , М. Борна , Э. Шрёдингера , В. Гейзенберга , В. Паули , П. Дирака , Э. Ферма , Л. Д. Ландау , В. А. Фока и многих др. физиков. Квантовая теория позволила дать интерпретацию спектрам атомов, молекул и ионов, объяснить воздействие электрических, магнитных и акустических полей на спектры, установить зависимость характера спектра от условий возбуждения и т.д. Примером обратного влияния О. на развитие самой квантовой теория может служить вызванное необходимостью объяснения спектральных закономерностей открытие собственного момента количества движения – спина — и связанного с ним собственного магнитного момента у электрона (С. Гаудсмит , Дж. Уленбек , 1925) и др. частиц и ядер атомов, повлекшее за собой установление Паули принципа (1925) и, в свою очередь, истолкование сверхтонкой структуры спектров (Паули, 1928). Т. о., построение двух из наиболее фундаментальных теорий современной физики — квантовой механики и специальной теории относительности — было стимулировано в первую очередь проблемами, возникшими при развитии О., и основывалось на наблюдении и анализе оптических явлений.

Примером успехов новой О. является оптическая ориентация (ориентация магнитных моментов) атомов фотонами, отдающими им свой спин при поглощении, (А. Кастлер , 1953). Наиболее важное событие современной О. — экспериментальное обнаружение и создание методов генерации вынужденного излучения атомов и молекул, предсказанного Эйнштейном в 1916 (см. также Излучение ). Вынужденно испущенный фотон дублирует фотон, вызвавший переход, и, если имеется запас возбуждённых систем, превышающий число поглощающих (т. н. активная среда с инверсией населённостей энергетических состояний атомов или молекул), этот процесс может многократно повторяться, т. е. происходит усиление исходного светового потока (оптического сигнала). Добавление к такому квантовому усилителю оптической обратной связи (например, путём возвращения части излучения с помощью системы зеркал) превращает его в оптический квантовый генератор (лазер). Первые квантовые генераторы (в сантиметровом диапазоне длин волн — мазеры) были созданы А. М. Прохоровым , Н. Г. Басовым и Ч. Таунсом в 1954. В 1960 был построен первый лазер на рубине, вскоре в том же году — первый газоразрядный лазер на смеси гелия и неона, а в 1962 — полупроводниковые лазеры. Важность этих основополагающих работ была немедленно оценена и за ними последовали многочисленные исследования свойств вынужденного излучения и возможностей его генерации. Было установлено, что, используя различные методы получения инверсной населённости, можно строить лазеры на твёрдых, жидких, газообразных и плазменных средах. Их появление стимулировало развитие таких традиционных областей О., как спектроскопия, люминесценция, фотохимия, привело к возникновению совершенно новых научных и технических направлений (нелинейная и параметрическая О., силовая О., оптическая обработка материалов) и к модификации уже развивавшихся направлений (например, оптической связи и оптической локации), сделало возможным практическую реализацию и широкое применение ранее высказанных идей (голография), позволило распространить методы О. на решение задач, не свойственных ей раньше (например, проблема управляемого термоядерного синтеза ), и тем самым подтвердило динамичность О., свойственную наукам, находящимся на переднем крае знаний.

Лит.: Ландсберг Г. С., Оптика. 4 изд., М., 1957 (Общий курс физики, т. 3); Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1—2, М. — Л., 1948—52: Герцбергер М., Современная геометрическая оптика, пер. с англ., М., 1962; Квазиоптика, пер. с англ., под ред. Б. Каценеленбаума и В. Шевченко, М., 1966; Сороко Л. М., Основы голографии и когерентной оптики, М., 1971; Бломберген Н., Нелинейная оптика, пер. с англ., М., 1966; Действие излучения большой мощности на металлы, под ред. А. М. Бонч-Бруевича и М. А. Ельяшевича, М., 1970; Гарбуни М., Физика оптических явлений, пер. с англ., М., 1967; Ахманов С. А., Хохлов Р. В., Проблемы нелинейной оптики, М., 1964; Вавилов С. И., Экспериментальные основания теории относительности, М. — Л., 1928; Ньютон И., Оптика..., 2 изд., М., 1954; Калверт Дж., Питтс Дж., Фотохимия, пер. с англ., М., 1968; Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962; 3оммерфельд А., Оптика, пер. с нем., М., 1953; Лорентц Г. А., Теория электронов и ее применение к явлениям света и теплового излучения, пер. с англ., М., 1953; Клаудер Дж., Сударшан Э., Основы квантовой оптики, пер. с англ., М., 1970; Вавилов С. И., Микроструктура света, М., 1950.

А. М. Бонч-Бруевич.

«Оптика и спектроскопия»

«О'птика и спектроскопи'я» , ежемесячный научный журнал Отделения общей физики и астрономии АН СССР. Издаётся с 1956 в Ленинграде. Публикует оригинальные статьи по всем разделам оптики, спектроскопии, прикладной и технической оптики. Рассчитан на научных работников, преподавателей вузов, инженеров, студентов. Главный редактор — член-корреспондент С. Э. Фриш (с 1956). Тираж (1973) около 2500 экземпляров. С 1956 переиздаётся на английском.

Оптика неоднородных сред

О'птика неодноро'дных сред , раздел оптики , в котором изучаются явления, сопровождающие распространение оптического излучения в средах, преломления показатель n которых не постоянен, а зависит от координат. Оптическими неоднородностями называются поверхности или объёмы внутри среды, на (в) которых изменяется n . Независимо от физической природы неоднородности она всегда отклоняет свет от его первоначального направления. На поверхностях, разделяющих объёмы среды с разными n , происходит отражение света и преломление

света ; на частицах или иных объёмах, n которых отличается от n окружающей среды, — рассеяние света . Существенную роль в О. н. с. играет интерференция света между рассеянными, отражёнными и преломленными световыми волнами, а также исходной (падающей) волной. Важный раздел О. н. с. — оптика тонких слоев . Оптические неоднородности могут представлять собой включения в среду др. веществ, с иным n (аэрозоли, дымы, суспензии, эмульсии); размеры этих включений чаще всего превышают длину световой волны l. Такие среды называются мутными средами . При большой концентрации инородных частиц рассеяние на них падающего света по всем направлениям приводит к тому, что мутная среда становится непрозрачной. Если неоднородность среды вызвана присутствием в ней мелкодисперсных коллоидных частиц (см. Коллоидные системы ), то среда кажется совершенно прозрачной; однако наблюдение под углами около 90° к направлению падающего света обнаруживает свечение среды, обусловленное интенсивным рассеянием света (Тиндаля эффект ). К др. классу мутных сред относятся чистые (без инородных включений) вещества, в которых изменения n в большом числе микрообъёмов, приводящие к рассеянию света, вызваны флуктуациями плотности среды в результате хаотического теплового движения её молекул или турбулентностью среды. Интенсивность I света, рассеиваемого непоглощающими диэлектрическими частицами, пропорциональна lp , где р — параметр, зависящий от отношения размеров частиц к l. При рассеянии на тепловых флуктуациях, размеры которых много меньше l, I ~l–4 (Рэлея закон ). Такая сильная зависимость от l объясняет преимущественное рассеяние более коротких волн; поэтому наблюдаемый цвет дневного неба — голубой, хотя атмосфера Земли освещается солнечным белым светом совокупностью световых волн различной длины. Для частиц, размеры которых >>l, параметр р близок к 0 и рассеяние определяется геометрическими эффектами преломления света на поверхностях частиц. I в этом случае не зависит от l, что и наблюдается при рассеянии света в туманах и облаках — они имеют белый цвет. На изучении рассеяния света неоднородностями в газах, жидкостях и твёрдых телах основаны методы нефелометрии и ультрамикроскопии (см. Ультрамикроскоп ), позволяющие определять концентрацию неоднородностей и изучать их природу (а в нефелометрии — и их размеры).

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Шифрин К. С., Рассеяние света в мутной среде, М. — Л., 1951; Волькенштейн М. В., Молекулярная оптика, М. — Л., 1951; Шишловский А. А., Прикладная физическая оптика, М., 1961; Фабелинский И. Л., Молекулярное рассеяние света, М., 1965; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967.

Л. Н. Капорский.

Оптика тонких слоёв

О'птика то'нких слоёв , раздел оптики . В О. т. с. изучается прохождение света через один или последовательно через несколько непоглощающих слоев вещества, толщина которых соизмерима с длиной световой волны. Специфика О. т. с. заключается в том, что в ней определяющую роль играет интерференция света между частично отражаемыми на верхних и нижних границах слоев световыми волнами. В результате интерференции происходит усиление или ослабление проходящего или отражаемого света, причём этот эффект зависит от вносимой оптической толщиной слоев разности хода лучей, длины волны (или набора длин волн) света, угла его падения и т.д. Тонкие слои могут быть образованы на массивной подложке из стекла, кварца или др. оптической среды с помощью термического испарения вещества и его осаждения на поверхность подложки, химического осаждения, катодного распыления или химических реакций материала подложки с выбранным веществом. Для получения таких слоев используют различные окислы: Al2 O3 (1,59), SiO2 (1,46), TiO2 (2,2—2,6); фториды: MgF2 (1,38), CaF2 (1,24), LiF (1,35); сульфиды: ZnS (2,35), CdS (2,6); полупроводники Si (3,5), Ge (4,0), а также некоторые др. соединения. (В скобках указаны преломления показатели веществ.)

Одно из важнейших практических применений О. т. с. — уменьшение отражательной способности поверхностей оптических деталей (линз, пластин и пр.). Подробно об этом см. в ст. Просветление оптики . Нанося многослойные покрытия из большого (13—17 и более) числа чередующихся слоев с высоким и низким n , изготовляют зеркала с большим отражения коэффициентом , обычно в сравнительно узкой спектральной области, но не только в диапазоне видимого света, а и в УФ и ИК диапазонах (см. Зеркало ). Коэффициент отражения таких зеркал (50—99,5%) зависит как от длины волны, так и от угла падения излучения. С помощью многослойных покрытий разделяют падающий свет на прошедший и отражённый практически без потерь на поглощение; на этом принципе созданы эффективные светоделители (полупрозрачные зеркала). Системы из чередующихся слоев с высоким и низким n используют и как интерференционные поляризаторы, отражающие составляющую света, поляризованную перпендикулярно плоскости его падения (последняя проходит через направление светового луча и нормаль к поверхности), и пропускающие параллельно поляризованную составляющую (см. Поляризационные приборы ,Поляризация света ). Степень поляризации в проходящем свете достигает для многослойных поляризаторов 99%. О. т. с. позволила создать получившие широкое распространение интерференционные светофильтры , полоса пропускания которых может быть сделана очень узкой — существующие многослойные светофильтры выделяют из спектральной области шириной в 500 нм интервалы длин волн 0,1—0,15 нм . Тонкие диэлектрические слои применяют для защиты металлических зеркал от коррозии и при исправлении аберраций линз и зеркал (см. Аберрации оптических систем ). О. т. с. лежит в основе многих других оптических устройств, измерительных приборов и спектральных приборов высокой разрешающей способности. Светочувствительные слои фотокатодов и болометров по большей частью представляют собой тонкослойные покрытия, эффективность которых существенно зависит от их оптических свойств. О. т. с. широко применяется в лазерах и усилителях света (например, при изготовлении интерферометров Фабри – Перо; см. Интерферометр ), при создании дихроичных зеркал, используемых в цветном телевидении , в интерференционной микроскопии (см. Микроскоп ) и т.д. См. также Ньютона кольца ,Полосы равного наклона ,Полосы равной толщины .

Лит.: Просветление оптики, под ред. И. В. Гребенщикова, М. — Л., 1946; Розенберг Г. В., Оптика тонкослойных покрытий, Л., 1958; Крылова Т. Н., Интерференционные покрытия, Л., 1973.

Л. Н. Капорский.

Оптикатор

Оптика'тор , прибор для измерения линейных размеров, в котором пружинный преобразовательный механизм микрокатора используется в сочетании с оптической системой. В О. вместо стрелочного указателя (в отличие от микрокатора) применен так называемый оптический рычаг, который состоит из осветителя и зеркала, приклеенного к пружине. Луч света, пройдя через отверстие с нитью посредине и отразившись от зеркала в виде «зайчика», передаёт на шкалу изображение нити, которое и является указателем. О. обладает всеми положительными качествами микрокатора, кроме того, имеет бо'льшие пределы измерения. Первые О. были изготовлены в 40-х гг. в ГДР (г. Зуль). В СССР изготовляют О. с ценой деления 0,1; 0,2; 0,5 и 1 мкм , с пределами измерения соответственно 24 (±12); 50 (±25); 100 (±50) и 250 (±125) мкм . Погрешность О. при его вертикальном положении не более 0,5 цены деления в пределах 100 делений шкалы и не более 1 цены деления на всём пределе измерения. О. производят измерения методом сравнения с концевыми мерами или аттестованными деталями. О. обычно снабжаются переставными указателями поля допуска в виде 2 светофильтров, изменяющих на границах допуска окраску «зайчика» в красный или зелёный цвет. При измерениях О. устанавливают на стойке.

Поделиться с друзьями: