Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (ПО)
Шрифт:

jд = - D gradn. (13)

Это равенство определяет понятие коэфициента диффузии D, который связан с подвижностью m универсальным (если носители тока не вырождены) соотношением Эйнштейна:

D = kT m/e, (14)

которое, в частности, отражает связь диффузии с интенсивностью теплового движения.

Для неравновесных носителей важной характеристикой является длина диффузии lд путь, который они успевают пройти диффузионным образом за время своей жизни t:

lд =

. (15)

Величина lд может быть различной, достигая в чистых П. с большой подвижностью 0,1 см (Ge при 300 К).

Гальваномагнитные явления в полупроводниках (явления, связанные с влиянием магнитного поля

на прохождение тока в П.). Магнитное поле Н, перпендикулярное электрическому Е, отклоняет дрейфующие носители в поперечном направлении и они накапливаются на боковом торце образца, так что создаваемое ими поперечное электрическое поле компенсирует отклоняющее действие магнитного поля (см. Холла эффект ). Отношение этого наведённого поперечного поля к произведению плотности тока на магнитное поле (постоянная Холла) в простейшем случае носителей одного типа с изотропной эффективной массой и независящим от энергии временем свободного пробега равно: 1/nec, т. е. непосредственно определяет концентрацию n носителей. Магнетосопротивление в этом случае отсутствует, т.к. эдс Холла компенсирует полностью Лоренца силу .

В П. гальваномагнитные явления значительно сложнее, чем в металлах, т.к. П. содержат 2 типа носителей (или больше, например тяжёлые и лёгкие дырки и электроны), времена их свободного пробега существенно зависят от энергии, а эффективные массы анизотропны. Магнитное поле отклоняет электроны и дырки в одну сторону (т.к. дрейфуют они в противоположные стороны). Поэтому их заряды и наведённое поле частично компенсируются в меру отношения их концентраций и подвижностей. Если время релаксации зависит от энергии, то дрейфовая скорость и вклад в полный ток носителей разных энергий неодинаковы. Действия магнитного и наведённого поперечного электрического полей компенсируются только в среднем, но не для каждого носителя, т.к. сила Лоренца пропорциональна скорости, а электрическая сила от неё не зависит, т. е. закручивающее действие магнитного поля как бы уменьшает длину свободного пробега более быстро дрейфующих частиц и тем самым уменьшает ток. Из-за анизотропии эффективных масс носители движутся в направлении поля и вся картина отклонения их магнитным полем меняется.

Изучение гальваномагнитных эффектов в П. даёт обширную информацию о концентрациях носителей, о структуре энергетических зон П. и характере процессов рассеяния.

Термоэлектрические явления в полупроводниках. Возможности использования термоэлектрических явлений в П. перспективны для прямого преобразования тепловой энергии в электрическую, а также для охлаждения. Полупроводниковые термоэлементы позволяют получать кпд преобразования ~10% или охлаждение до 230 К . Причиной больших (на несколько порядков больших, чем в металлах) величин термоэдс и коэффициентов Пельтье (см. Пельтье эффект ) в П. является относительная малость концентрации носителей. Электрон, переходя со дна зоны проводимости Ec на уровень Ферми EF металла, находящегося в контакте с данным П., выделяет энергию (теплоту Пельтье) П = Ec– EF или поглощает её при обратном переходе. С термодинамической точки зрения EF есть химический потенциал электронов и поэтому он должен быть одинаков по обе стороны контакта. В П. в области примесной проводимости величина П = Ec– EF определяется условием: n = Nd Na. При не слишком высокой концентрации примесей она оказывается большой (П = Ec– EF >> kT ) и относительно быстро возрастающей с ростом температуры, что обеспечивает большие значения П и термоэдс а, связанной с П соотношением: П = aТ .

В металлах EF лежит глубоко в разрешенной зоне и из-за очень сильного вырождения в переносе тока принимают участие лишь электроны с энергиями очень близкими к EF . Среднее изменение энергии электрона при прохождении контакта двух металлов оказывается поэтому очень малым: П ~ kT.

Контактные явления, р—n-переход. Контакты П. с металлом или с др. П. обладают иногда выпрямляющими свойствами, т. е. значительно эффективнее пропускают ток в одном направлении, чем в обратном. Это происходит потому, что в приконтактной области изменяется концентрация или даже тип носителей тока, т. е. образуется пространственный заряд, обеспечивающий контактную разность потенциалов , необходимую для выравнивания (в состоянии равновесия) уровней Ферми по обе стороны контакта. В отличие от металлов, в П. эта область оказывается достаточно широкой, чтобы при малой концентрации носителей обеспечить нужный перепад потенциала. Если знак контактной разности потенциалов таков, что концентрация носителей в приконтактной области становится меньшей, чем в объёме П., то приконтактный слой определяет электросопротивление всей системы. Внешняя разность потенциалов дополнительно уменьшает число носителей в приконтактной области, если она добавляется к контактной разности потенциалов или, наоборот, увеличивает их концентрацию, если знак её противоположен. Т. о., сопротивление контакта для токов в прямом и обратном направлениях оказывается существенно разным, что и обеспечивает выпрямляющие свойства контакта (барьер Шотки).

Такие контакты явились первыми полупроводниковыми приборами (выпрямители, детекторы), однако развитие полупроводниковой электроники началось лишь после того, как были созданы р—n– переходы (см. Электронно-дырочный переход ) контакты областей П. с разным типом проводимости внутри единого полупроводникового кристалла. Контактная разность потенциалов

в этом случае близка к ширине запрещенной зоны, т.к. EF в n– области лежит вблизи дна зоны проводимости Ec , а в р– области — вблизи валентной зоны Eu . Уменьшающая её внешняя разность потенциалов вызывает диффузионные потоки электронов в р- область и дырок в n– область (инжекцию неосновных носителей тока). В обратном направлении р—n– переход практически не пропускает ток, т.к. оба типа носителей оттягиваются от области перехода. В П. с большой длиной диффузии, таких, как Ge и Si, инжектированные одним р —n – переходом неравновесные носители могут достигать другого, близко расположенного р—n– перехода, и существенно определять ток через него. Ток через р—n– переход можно изменять, создавая вблизи него неравновесные носители каким-либо др. способом, например освещением. Первая из этих возможностей управления током р—n – перехода (инжекция) является физической основой действия транзистора , а вторая (фотоэдс) — солнечных батарей .

Горячие носители. Нелинейные явления в полупроводниках . Относительная малость концентрации свободных носителей и их средней энергии в П. (по сравнению с металлами), а также большие длины свободного пробега приводят к тому, что не только концентрации, но и распределение по энергиям носителей тока в соответствующей зоне сравнительно легко и в широких пределах можно изменять различными внешними воздействиями. Вместе с энергией носителей меняются и др. их характеристики (эффективная масса, время свободного пробега, подвижность и т.п.).

Наиболее важно воздействие сильных электрических полей, которые способны изменять распределение носителей по энергиям и их концентрации. Для этого часто бывают достаточны поля ~ 100—1000 в/см, а иногда ещё меньше (см. ниже). Рассеиваясь на примесях и полностью утрачивая при этом направленность своего движения по полю, электрон вообще не отдаёт энергию, а при испускании фононов отдаёт лишь малую её долю d << 1. Поэтому, когда энергия, набираемая носителем за счёт ускорения его полем Е на длине свободного пробега l, равная eEl, становится столь большой, что deEl > kT, то электрон уже не способен полностью отдагь её на возбуждение колебаний решётки и его средняя энергия начинает возрастать. Существенно, что из-за хаотического изменения скорости при рассеянии возрастает именно энергия хаотического движения, а скорость направленного движения остаётся по-прежнему относительно малой (горячие носители). Более того, из-за возрастания числа столкновений с фононами, с ростом энергии носителей увеличение uд с дальнейшим ростом поля может замедлиться, а потом и вообще прекратиться. В результате, разогрев полем носителей тока приводит к отклонениям от закона Ома, причём характер этих отклонений весьма различен для разных П. и даже для одного и того же П. в зависимости от температуры, присутствия каких-либо специфических примесей, наличия магнитного поля и т.п. (рис. 6 ). П. с нелинейными характеристиками находят широкое применение в различных приборах полупроводниковой электроники.

Если в некоторой области полей дрейфовая скорость убывает с ростом поля Е, то равномерное распределение тока по образцу при полях, больших некоторого критического, оказывается неустойчивым и вместо него спонтанно возникают движущиеся в направлении тока области (домены), в которых поле во много раз больше, чем в остальной части образца, а концентрация носителей также сильно отличается от её среднего по образцу значения. Прохождение доменов сопровождается сильными периодическими осцилляциями тока. П. в таких условиях является генератором электрических колебаний, иногда весьма высокочастотных (~1011гц ). Это явление, связанное с N-образной характеристикой П. (рис. 6 , б), называется Ганна эффектом и наблюдается в GaAs n– типа и некоторых соединениях типа AIII BV . Оно объясняется тем, что электроны, находившиеся в Г-минимуме зоны проводимости, где их эффективная масса мала, под действием поля набирают энергию, достаточно большую (~0,35 эв ) для перехода в D-минимум, где эффективная масса значительно больше, в результате чего их дрейфовая скорость уменьшается.

В П., обладающих пьезоэлектрическими свойствами (AIII BV , AII BVI , Te), где упругие волны в кристаллической решётке сопровождаются возникновением электрического поля, увеличивающим их взаимодействие с носителями, аналогичные нелинейные эффекты возникают также из-за отклонения от равновесного распределения фононов. В этих веществах поток носителей становится интенсивным излучателем упругих волн, когда дрейфовая скорость носителей превышает скорость звука. Электрический потенциал упругой волны достаточно большой амплитуды захватывает носители, т. е. заставляет их собираться в областях минимума этого потенциала, так что они движутся вместе с волной. Если дрейфовая скорость сгустка носителей превышает скорость волны, то волна тормозит их своим полем, отбирая у них энергию, и поэтому усиливается сама. В результате, достигнув скорости звука, дрейфовая скорость перестаёт нарастать с ростом поля, а все дальнейшие затраты энергии внешнего поля идут на усиление упругих волн. В таком режиме пьезополупроводники используются для усиления и генерации ультразвука .

Отклонения от закона Ома, включая и характеристики, показанные на рис. 6 , могут быть вызваны не только нелинейной зависимостью uд от Е, но и изменением концентрации носителей под действием электрического поля, например из-за изменения скорости захвата носителей какими-либо примесями в условиях разогрева полем. Самым распространённым механизмом изменения концентрации носителей в сильном поле является ударная ионизация , когда горячие носители, набравшие энергию большую, чем ширина запрещенной зоны П., сталкиваясь с электронами валентной зоны, выбрасывают их в зону проводимости, создавая тем самым новые электронно-дырочные пары.

Поделиться с друзьями: