Большая Советская Энциклопедия (ПО)
Шрифт:
Рекомбинация электронно-дырочной пары может сопровождаться испусканием кванта излучения, близкого по энергии к ширине запрещенной зоны DE полупроводника (рис. 1 , а); при этом длина волны l » hc/ DE , где h — Планка постоянная , с — скорость света.
Инверсия населённостей в полупроводниках . Оптическое квантовое усиление в полупроводнике может наблюдаться в том случае, если зона проводимости вблизи её дна Ec заполнена электронами в большей степени, чем валентная зона вблизи её потолка Eu . Преобладание числа переходов с испусканием квантов над переходами с их поглощением обеспечивается тем, что на верхних уровнях находится больше электронов, чем на нижних, тогда как вероятности вынужденных переходов в обоих направлениях одинаковы. Заполнение зон принято описывать с помощью т. н. квазиуровней Ферми, отделяющих состояния с вероятностью заполнения уровней
Для поддержания такого состояния необходима высокая скорость накачки, восполняющей убыль электронно-дырочных пар вследствие излучательных переходов. Благодаря этим вынужденным переходам поток излучения нарастает (рис. 1 , б), т. е. реализуется оптическое усиление.
В П. л. применяют следующие методы накачки: 1) инжекция носителей тока через р—n- переход (см. Электронно-дырочный переход ), гетеропереход или контакт металл — полупроводник (инжекционные лазеры); 2) накачка пучком быстрых электронов; 3) оптическая накачка; 4), накачка путём пробоя в электрическом поле. Наибольшее развитие получили П. л. первых двух типов.
Инжекционные лазеры . Лазер на р—n- переходе представляет собой полупроводниковый диод, у которого две плоскопараллельные поверхности, перпендикулярные р—n– переходу (рис. 2 ), образуют оптический резонатор (коэффициент отражения от граней кристалла ~20—40%). Инверсия населённостей достигается при большой плотности прямого тока через диод (порог генерации соответствует току ~1 кА/см2 , а при пониженной температуре ~ 102 A/см2,рис. 3 ). Для получения достаточно интенсивной инжекции применяют сильно легированные полупроводники.
Инжекционные лазеры на гетеропереходе (появились в 1968) представляют собой, например, двусторонние гетероструктуры (рис. 4 ). Активный слой (GaAs) заключён между двумя полупроводниковыми гетеропереходами , один из которых (типа р—n ) служит для инжекции электронов, а второй (типа р—р ) отражает инжектированные электроны, препятствуя их диффузионному растеканию из активного слоя (электронное ограничение). При одинаковом токе накачки в активном слое гетероструктуры достигается большая концентрация электронно-дырочных пар и, следовательно, большее оптическое усиление, чем в П. л. На р—n– переходах. Другое преимущество гетероструктуры состоит в том, что образованный активным слоем диэлектрический волновод удерживает излучение, распространяющееся вдоль структуры, в пределах активного слоя (оптическое ограничение), благодаря чему оптическое усиление используется наиболее эффективно. Для П. л. на гетеропереходе необходимая плотность тока при Т = 300 К более чем в 10 раз ниже, чем у П. л. на р—n– переходе, что позволяет осуществить непрерывный режим генерации при температуре до 350 К.
П. л. инжекционного типа (рис. 5 ) работают в импульсном режиме с выходной мощностью до 100 вт и в непрерывном режиме с мощностью более 10 вт (GaAs) в ближней инфракрасной (ИК) области (l = 850 нм ) и около 10 мвт (Pbx Sn1-x Te) в средней ИК области (l = 10 мкм ). Недостаток инжекционных лазеров — слабая направленность излучения, обусловленная малыми размерами излучающей области (большая дифракционная расходимость), и относительно широкий спектр генерации по сравнению с газовыми лазерами.
П. л. с электронной накачкой. При бомбардировке полупроводника быстрыми электронами с энергией W ~ 103 —106 эв в кристалле рождаются электронно-дырочные пары; количество пар, создаваемое одним электроном, ~W /3DE . Этот способ применим к полупроводникам с любой шириной запрещенной зоны. Выходная мощность П. л. достигает 106вт, что объясняется возможностью накачки большого объёма полупроводника (рис. 6 ). П. л. с электронной накачкой содержит электронный прожектор, фокусирующую систему и полупроводниковый кристалл в форме оптического резонатора, помещенные в вакуумную колбу (рис. 7 ). Техническое достоинство П. л. с электронной накачкой — возможность быстрого перемещения (сканирования) электронного
пучка по кристаллу, что даёт дополнительный способ управления излучением. Т. к. заметная часть энергии электронного пучка тратится на разогрев решётки кристалла, то кпд ограничен (~1 /3 ); на каждую электронно-дырочную пару расходуется энергия 3DE , а испускается фотон с энергией ~DEПолупроводниковые лазерные материалы. В П. л. используются главным образом бинарные соединения типа А3 В5 , А2 В6 , А4 В6 и их смеси — твёрдые растворы (см. табл.). Все они — прямозонные полупроводники, в которых межзонная излучательная рекомбинация может происходить без участия фононов или др. электронов и поэтому имеет наибольшую вероятность среди рекомбинационных процессов. Кроме перечисленных в табл. веществ, имеется ещё некоторое количество перспективных, но мало изученных материалов, пригодных для П. л., например др. твёрдые растворы. В твёрдых растворах величина DE зависит от химического состава, благодаря чему можно изготовить П. л. на любую длину волны от 0,32 до 32 мкм.
Применение П. л.: 1) оптическая связь (портативный оптический телефон, многоканальные стационарные линии связи); 2) оптическая локация и специальная автоматика (дальнометрия, высотометрия, автоматическое слежение и т.д.); 3) оптоэлектроника (излучатель в оптроне , логические схемы, адресные устройства, голографические системы памяти, см. Голография ), 4) техника специального освещения (скоростная фотография, оптическая накачка др. лазеров и др.); 5) обнаружение загрязнений и примесей в различных средах; 6) лазерное проекционное телевидение (рис. 8 ).
Полупроводниковые лазеры (Э — накачка электронным пучком; О — оптическая накачка; И — инжекционные лазеры; П — накачка пробоем в электрическом поле)
Полупроводник | Длина волны излучения, мкм | Максимальная рабочая температура, К | Способ накачки |
ZnS ZnO Zn1-x Cdx S ZnSe CdS ZnTe CdS1-x Sex CdSe CdTe | 0,32 0,37 0,32—0,49 0,46 0,49—0,53 0,53 0,49—0,68 0,68—0,69 0,79 | 77 77 77 77 300 77 77 77 77 | Э Э Э Э Э, О, П Э Э, О Э, О Э |
GaSe GaAs1-x Px Alx Ga1-x As Inx Ga1-x P GaAs lnP Inx Ga1-x As InP1-x Asx InAs InSb | 0.59 0,62—0,9 0,62—0,9 0,60—0,91 0,83—0,90 0,90—0,91 0,85—3,1 0,90—3,1 3,1—3,2 5,1—5,3 | 77 300 300 77 450 77 300 77 77 100 | Э, О Э, О, И О, И О, И Э, О, И, П О, И, П О, И О, И Э, О, И Э, О, И |
PbS PbS1-x Sx PbTe PbSe Pbx Sn1-x Te | 3,9—4,3 3,9—8,5 6,4—6,5 8,4—8,5 6,4—31,8 | 100 77 100 100 100 | Э, И О, И Э, О, И Э, О, И Э, О, И |
Историческая справка. Первая работа о возможности использования полупроводников для создания лазера была опубликована в 1959 Н. Г.Басовым , Б. М. Вулом и Ю. М. Поповым. Применение р—n– переходов для этих целей было предложено в 1961 Н. Г. Басовым, О. Н. Крохиным, Ю. М. Поповым. П. л. на кристалле GaAs впервые были осуществлены в 1962 в лабораториях Р. Холла, М. И. Нейтена и Н. Холоньяка (США). Им предшествовало исследование излучательных свойств р—n– переходов, показавшее, что при большом токе появляются признаки вынужденного излучения (Д. Н. Наследов, С. М. Рыбкин с сотрудниками, СССР, 1962). В СССР фундаментальные исследования, приведшие к созданию П. л., были удостоены Ленинской премии в 1964 (Б. М. Вул, О. Н. Крохин, Д. Н. Наследов, А. А. Рогачёв, С. М. Рыбкин, Ю. М. Попов, А. П. Шотов, Б. В. Царенков). П. л. с электронным возбуждением впервые осуществлен в 1964 Н. Г. Басовым, О. В. Богданкевичем, А. Г. Девятковым. В этом же году Н. Г. Басов, А. З. Грасюк и В. А. Катулин сообщили о создании П. л. с оптической накачкой. В 1963 Ж. И. Алферов (СССР) предложил использовать гетероструктуры для П. л. Они были созданы в 1968 Ж. И. Алферовым, В. М. Андреевым, Д. З. Гарбузовым, В. И. Корольковым, Д. Н. Третьяковым, В. И. Швейкиным, удостоенными в 1972 Ленинской премии за исследования гетеропереходов и разработку приборов на их основе.
Лит.: Басов Н. Г.. Крохин О. Н., Попов Ю. М., Получение состояний с отрицательной температурой в р—n-переходах вырожденных полупроводников, «Журнал экспериментальной и теоретической физики», 1961, т. 40, в. 6; Басов Н. Г., Полупроводниковые квантовые генераторы, «Успехи физических наук», 1965, т. 85, в. 4; Пилкун М., Инжекционные лазеры, «Успехи физических наук», 1969, т. 98, в. 2; Елисеев П. Г., Инжекционные лазеры на гетеропереходах, «Квантовая электроника», 1972, № 6 (12); Басов Н. Г., Никитин В. В., Семенов А. С., Динамика излучения Инжекционных полупроводниковых лазеров, «Успехи физических наук», 1969, т. 97, в. 4.