Большая Советская Энциклопедия (РА)
Шрифт:
В результате слияния простых Р. д. в к. могут образоваться их скопления. Образование скоплений наиболее вероятно в тех случаях, когда облучение производится частицами высоких энергий, порождающими каскадные процессы. При этом даже небольшие первичные скопления могут служить «зародышами», на которых происходит накопление (конденсация) простых дефектов. Рост вакансионных скоплений превращает их в поры. Однако этот процесс не может происходить непрерывно: с одной стороны, он ограничен относительным уменьшением поверхности конденсации вакансий, с другой — условиями теплового равновесия. В металлах сферические поры неустойчивы, они сдавливаются в плоскости одного из наиболее плотных атомных слоев кристалла и образуют кольцевые дислокации.
Наиболее полную информацию о Р. д. в к. можно получить, если облучать материалы при очень низкой температуре (вплоть до нескольких К). Образовавшиеся Р. д. в к. как бы «замораживаются», процесс их миграции по кристаллу максимально замедляется. При последующем постепенном нагревании часто наблюдается ступенчатая картина восстановления исследуемых свойств материала. Исследование характера и скорости восстановления свойств во времени при температуре наиболее резкого их изменения на границе соседних ступеней (изотермический
Исследование Р. д. в к. имеет большое практическое значение. Различные конструкционные материалы и делящиеся вещества в ядерных реакторах, материалы, находящиеся на борту космических объектов в радиационных поясах Земли, подвергаются воздействию потоков нейтронов, протонов, электронов и g-квантов. Знание типа образующихся Р. д. в к., их превращений и термической стабильности, а также влияния Р. д. в к. на свойства материалов позволяют прогнозировать работу последних под воздействием облучения, открывает пути создания радиационно-стойких материалов.
Лит.: Конобеевский С. Т., Действие облучения на материалы, М., 1967; Вавилов В. С., Ухин Н. А., Радиационные эффекты в полупроводниках и полупроводниковых приборах, М., 1969; Томпсон М., Дефекты и радиационные повреждения в металлах, пер. с англ., М., 1971.
Н. А. Ухин.
Радиационные повреждения
Радиацио'нные поврежде'ния, то же, что лучевое поражение.
Радиационные поправки
Радиацио'нные попра'вки, в квантовой электродинамике поправки к значениям некоторых физических величин и сечениям различных процессов (вычисленным по формулам релятивистской квантовой механики), обусловленные взаимодействием заряженной частицы с собственным электромагнитным полем. Возникновение Р. п. можно рассматривать как результат испускания и поглощения частицами виртуальных фотонов и электрон-позитронных пар. Р. п. рассчитывают по методу теории возмущений, представляя их в виде ряда по степеням постоянной тонкой структуры a = e2l
Наибольший интерес представляют Р. п. к магнитному моменту электрона и мюона, радиационное смещение атомных уровней энергии (сдвиг уровней), Р. п. к сечениям рассеяния электрона электроном или атомным ядром и др. (см. Квантовая теория поля). Результаты расчётов Р. п. вплоть до величин 3-го порядка блестяще согласуются с экспериментальными данными и свидетельствуют о справедливости квантовой электродинамики по крайней мере на расстояниях, больших 5x10– 15см. Р. п. растут с ростом энергии, и эффективным параметром разложения при высоких энергиях является aln (E/m), а в некоторых случаях aln (E/m) ln (E/DE), где Е — энергия частицы в системе центра инерции, m — её масса, DЕ — экспериментальное разрешение прибора.
Р. п. могут быть в ряде случаев подсчитаны не только для электродинамических процессов, но и для процессов, вызванных др. взаимодействиями. Однако для процессов, обусловленных сильным взаимодействием, вычисление Р. п. обычно нельзя строго провести из-за отсутствия законченной теории сильных взаимодействий.
При вычислении Р. п. к электродинамическим величинам с точностью выше 3-го порядка существенный вклад получается от виртуального рождения сильно взаимодействующих частиц (адронов) и от учёта эффектов слабого взаимодействия. Отсутствие последовательной теории слабого взаимодействия и недостаток экспериментальных данных по процессам рождения адронов за счёт электромагнитного взаимодействия препятствуют вычислению этих эффектов.
Лит.: Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 3 изд., М., 1969, гл. 5.
Б. Л. Иоффе.
Радиационные пояса Земли
Радиацио'нные пояса' Земли', внутренние области земной магнитосферы, в которых магнитное поле Земли удерживает заряженные частицы (протоны,электроны,альфа-частицы), обладающие кинетической энергией от десятков кэв
до сотен Мэв (в разных областях Р. п. З. энергия частиц различна, см. ст. Земля, раздел Строение Земли). Выходу заряженных частиц из Р. п. З. мешает особая конфигурация силовых линий геомагнитного поля, создающего для заряженных частиц магнитную ловушку. Захваченные в магнитную ловушку Земли частицы под действием Лоренца силысовершают сложное движение, которое можно представить как колебательное движение по спиральной траектории вдоль силовой линии магнитного поля из Северного полушария в Южное и обратно с одновременным более медленным перемещением (долготным дрейфом) вокруг Земли (рис. 1). Когда частица движется по спирали в сторону увеличения магнитного поля (приближаясь к Земле), радиус спирали и её шаг уменьшаются. Вектор скорости частицы, оставаясь неизменным по величине, приближается к плоскости, перпендикулярной направлению поля. Наконец, в некоторой точке (её называют зеркальной) происходит «отражение» частицы. Она начинает двигаться в обратном направлении — к сопряжённой зеркальной точке в др. полушарии. Одно колебание вдоль силовой линии из Северного полушария в Южное протон с энергией ~ 100 Мэв совершает за время ~ 0,3 сек. Время нахождения («жизни») такого протона в геомагнитной ловушке может достигать 100 лет (~ 3x109сек), за это время он может совершить до 1010 колебаний. В среднем захваченные частицы большой энергии совершают до нескольких сотен миллионов колебаний из одного полушария в другое. Долготный дрейф происходит со значительно меньшей скоростью. В зависимости от энергии частицы совершают полный оборот вокруг Земли за время от нескольких минут до суток. Положительные ионы дрейфуют в западном направлении, электроны — в восточном. Движение частицы по спирали вокруг силовой линии магнитного поля можно представить как состоящее из вращения около т. н. мгновенного центра вращения и поступательного перемещения этого центра вдоль силовой линии.Структура радиационных поясов. При движении заряженной частицы в магнитном поле Земли её мгновенный центр вращения находится на одной и той же поверхности, получившей название магнитной оболочки (рис. 2). Магнитную оболочку характеризуют параметром L, его численное значение в случае дипольного поля (см. Диполь) равно расстоянию, выраженному в радиусах Земли, на которое отходит магнитная оболочка (в экваториальной плоскости диполя) от центра диполя. Для реального магнитного поля Земли (см. Земной магнетизм) параметр L приближённо сохраняет такой же простой смысл. Энергия частиц связана со значением параметра L; на оболочках с меньшими значениями L находятся частицы, обладающие большими энергиями. Это объясняется тем, что частицы высоких энергий могут быть удержаны лишь сильным магнитным полем, т. е. во внутренних областях магнитосферы. Обычно выделяют внутренний и внешний Р. п. 3., пояс протонов малых энергий (пояс кольцевого тока) и зону квазизахвата частиц (рис. 3), или авроральной радиации (по лат. названию полярных сияний). Внутренний радиационный пояс характеризуется наличием протонов высоких энергий (от 20 до 800 Мэв) с максимумом плотности потока протонов с энергией Ep> 20 Мэв до 104 протон/(см2xсекxстер) на расстоянии L ~ 1,5. Во внутреннем поясе присутствуют также электроны с энергиями от 20—40 кэв до 1 Мэв; плотность потока электронов с Ee³ 40 кэв составляет в максимуме ~ 106—107 электрон/(см2xсекxстер).
Внутренний пояс расположен вокруг Земли в экваториальных широтах (рис. 4).
С внешней стороны этот пояс ограничен магнитной оболочкой с L ~ 2, которая пересекается с поверхностью Земли на геомагнитных широтах ~ 45°. Ближе всего к поверхности Земли (на высоты до 200—300 км) внутренний пояс подходит вблизи Бразильской магнитной аномалии, где магнитное поле сильно ослаблено; над географическим экватором нижняя граница внутреннего пояса отстоит от Земли на 600 км над Америкой и до 1600 км над Австралией. На нижней границе внутреннего пояса частицы, испытывая частые столкновения с атомами и молекулами атмосферных газов, теряют свою энергию, рассеиваются и «поглощаются» атмосферой.
Внешний Р. п. З. заключён между магнитными оболочками c L ~ 3 и L ~ 6 с максимальной плотностью потока частиц на L ~ 4,5. Для внешнего пояса характерны электроны с энергиями 40—100 кэв, поток которых в максимуме достигает 106—107 электрон/(см2xсекxстер). Среднее время «жизни» частиц внешнего Р. п. З. составляет 105—107сек. В периоды повышенной солнечной активности во внешнем поясе присутствуют также электроны больших энергий (до 1 Мэв и выше).