Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (РА)
Шрифт:

РЛС систем ПРО крупных городов и промышленных объектов (в США, по данным иностранной печати) образуют радиолокационный комплекс, включающий РЛС обнаружения, сопровождения и опознавания целей и РЛС наведения противоракет, работающие главным образом в СМ, реже в ДМ диапазонах волн (рис. 6). Такая многофункциональная РЛС содержит несколько сотен передатчиков с импульсной мощностью каждого от 0,1 до 1 вт,фазированную антенную решётку, работой которой управляет ЦВМ, несколько тыс. параметрических усилителей, установленных во входных цепях приёмников. За рубежом существуют проекты наземных систем ПРО на основе применения мощных лазеров, предназначенных для поражения целей. Такие системы должны работать совместно со средствами автоматического слежения и фокусировки лазерного луча высокой интенсивности, в том числе с РЛС грубого слежения, обеспечивающей получение ориентировочных данных о приближающейся цели, с РЛС на лазерах для точного слежения за целью (см. Оптическая

локация) и с системой распознавания истинной цели при наличии ложных целей. Благодаря возможности получения узкого луча и малым габаритам РЛС на лазерах их предполагается применять также на КЛА и спутниках.

РЛС слежения за искусственными спутниками 3емли (ИСЗ) и измерения их траекторий различают прежде всего по составу и количеству измеряемых параметров. В простейшей однопараметрической РЛС ограничиваются измерением только доплеровской частоты (см. Доплера эффект), по характеру изменения которой в месте расположения РЛС определяют период обращения ИСЗ и др. параметры его орбиты. Орбиту ИСЗ можно точно определить, применив на трассе полёта ИСЗ несколько РЛС СМ диапазона, например точных импульсных РЛС — радиодальномеров, работающих с ответчиком на борту ИСЗ, у которого нестабильность задержки ответного импульса относительно мала. Эти РЛС с параболическими антеннами обеспечивают в режиме слежения определение угловых координат ИСЗ с точностью порядка нескольких угловых минут при коническом сканировании и порядка 1 угловой минуты при моноимпульсном методе. Т. о., эти трёхпараметрические РЛС являются некоторым развитием СОН, отличаясь от них построением основного канала автодальномера, многошкальностью и сохранением высокой точности слежения по дальности (ошибка измерения при космических скоростях объекта порядка 10 м). Импульсный режим позволяет реализовать одновременную работу нескольких РЛС с одним ответчиком. Применяют и четырёхпараметрические РЛС с когерентным ответчиком на борту, в которых дополнительное измерение радиальной скорости космических объектов обеспечивается при более простом режиме непрерывных колебаний. Сохранение импульсного режима и измерение радиальной скорости по частоте Доплера требует применения в РЛС импульсного когерентного режима, при котором вместо простого магнетронного передатчика применяется СВЧ усилитель мощности (например, на клистроне) и более сложный импульсный когерентный ответчик. Станции, измеряющие 6 параметров движения объекта — дальность, 2 угловые координаты и 3 их производные (т. е. радиальную и 2 угловые скорости), — применяют, например, при измерениях этих параметров, осуществляемых из одного пункта на активном участке полёта ракеты или КЛА. Сложность таких РЛС связана с построением многих каналов точного фазового измерения угловых координат (точность ~ 10 угловых секунд).

Другое направление использования РЛС для слежения за ИСЗ с высотой полёта в несколько сотен км и измерения их траектории основано на применении точных пеленгаторов ДМ диапазона со значительно более простыми (неследящими) антеннами фазовых угломерных каналов, обладающими в этом диапазоне достаточной эффективной площадью, а также экономичных и простых бортовых передатчиков, работающих в режиме непрерывных колебаний.

Для слежения за ИСЗ на расстояниях ~40 тыс. км (стационарные ИСЗ или ИСЗ с эллиптической орбитой типа «Молния») применяют РЛС со следящими (по программе полёта — в ДМ диапазоне и автоматически — в СМ диапазоне) полноповоротными параболическими антеннами.

Планетная РЛС, измеряющая расстояние до планеты, параметры её движения и др. физические характеристики, отличается большой эффективной поверхностью антенны, большой мощностью передатчика и высокой чувствительностью приёмного устройства. Длительность зондирующего сигнала таких РЛС ограничена временем прохождения радиоволн от Земли до планеты и обратно, которое равно, например, для Венеры ~5 мин, для Марса ~ 10 мин и для Юпитера ~ 1 ч. Так, в планетной РЛС, посредством которой сотрудники института радиотехники и электроники АН СССР изучали Марс, дальномерные измерения проводились фазовым методом по огибающей колебаний с несущей частотой 768 Мгц, модулированных по амплитуде колебаниями с частотами 3 и 4 гц, а измерения радиальной составляющей скорости — доплеровским методом на несущей частоте. Принимаемый сигнал во время сеансов наблюдения запоминался (записывался магнитофоном), а задержка огибающей принятого сигнала определялась (в процессе его многократного воспроизведения за пределами сеанса связи) корреляционным методом — по максимуму выходного сигнала коррелометра при различных задержках опорного сигнала. Величина доплеровского смещения частоты определялась при помощи селективных электрических фильтров, настроенных на определённые резонансные частоты.

3агоризонтные РЛС, используемые (в США, по данным иностранной печати) в декаметровом (коротковолновом) диапазоне волн для наблюдения на расстояниях в несколько тысяч км (например, с целью раннего обнаружения пусков баллистических ракет и грубого определения их координат, обнаружения ядерных взрывов, наблюдения за различными областями ионосферы, за полётом ИСЗ и т.д.), представляют собой наземные стационарные установки со сложными большими антеннами типа многоэлементных антенных решёток и мощными передатчиками с импульсной мощностью несколько десятков Мвт. Как правило, такие РЛС двух- или многопозиционные. Для них характерны многоканальное построение (например, со 120 и более каналами в диапазоне частот 4—6 Мгц), возможность устанавливать различные длительности импульсных сигналов и частоту их повторения

и соответственно регулировать ширину полосы частот в приёмнике и др. характеристики, находя оптимальный режим в зависимости от состояния ионосферы и характера поставленной задачи.

Лит.: Бартон Д., Радиолокационные системы, пер. с англ., М., 1967; Леонов А. И., Радиолокация в противоракетной обороне, М., 1967; Радиолокационные станции бокового обзора, под ред. А. П. Реутова, М., 1970; Мищенко Ю. А., Загоризонтная радиолокация, М., 1972.

А. Ф. Богомолов.

Рис. 4. Схема бокового обзора местности с помощью самолётной РЛС.

Рис. 1. Радиолокационная станция орудийной наводки.

Рис. 5. Радиолокационное изображение горной прибрежной местности.

Рис. 5. Схематическое изображение лучей многофункциональной РЛС системы противоракетной обороны.

Рис. 2. Схема кругового обзора земной поверхности с помощью самолётной РЛС.

Рис. 3. Наземная РЛС обнаружения и наведения самолётов.

Радиолокационные помехи

Радиолокацио'нные поме'хи (более точный термин — противорадиолокационные помехи), умышленные помехи, затрудняющие или нарушающие в военных целях нормальную работу радиолокационных (РЛ) средств: радиолокационных станций(РЛС), головок самонаведения управляемых ракет или авиабомб, радиовзрывателей и т.д. Различают активные и пассивные Р. п. Активные помехи создаются специальными приёмо-передающими или передающими радиоустройствами — станциями или передатчиками радиопомех, пассивные — различными искусственными отражателями радиоволн. (К пассивным помехам относят также отражения радиоволн от местных предметов и природных образований, мешающие работе РЛС; эти помехи не имеют непосредственного отношения к умышленному радиопротиводействию). По характеру воздействия активные Р. п. делят на маскирующие и имитирующие (дезориентирующие). Маскирующие помехи создаются хаотическими, шумовыми сигналами, среди которых трудно выделить сигналы, полученные от объектов; имитирующие — сигналами, похожими на сигналы от объектов, но содержащими ложную информацию. Активные маскирующие помехи часто имеют вид радиочастотных колебаний, модулированных шумами, или шумовых колебаний, подобных собственным шумам РЛ приёмника. В зависимости от ширины частотного спектра их подразделяют на прицельные, имеющие ширину спектра, соизмеримую с полосой пропускания РЛ приёмника, и заградительные, «перекрывающие» определённый участок радиочастотного диапазона. Активные помехи могут также иметь вид зондирующих РЛ сигналов, модулированных по амплитуде, частоте, фазе, времени задержки или поляризации (их формируют из зондирующих сигналов, принимаемых на станции помех). Такие помехи называются ответными, они могут быть как имитирующими, так и маскирующими.

Станции радиопомех размещают на защищаемых объектах или вне их. Современные (середины 70-х гг.) самолётные станции помех обладают мощностью ~10—103вт в непрерывном режиме и на порядок выше — в импульсном; максимальное усиление антенны обычно 10—20 дб. Мощности наземных и корабельных станций помех, как правило, выше. В передающей части станций помех применяются широкополосные усилители на лампах бегущей волны и усилители с распределёнными постоянными, генераторы на лампах обратной волны, магнетронах (магнетронах, настраиваемых напряжением) и др. электровакуумных приборах, перестраиваемых в широком диапазоне частот. Разрабатывают станции помех с фазированными антенными решётками, в которых используются усилители и генераторы на полупроводниковых приборах и миниатюрных лампах бегущей волны.

Для создания пассивных помех используют дипольные, ленточные, уголковые и диэлектрические линзовые отражатели, антенные решётки, надувные металлизированные баллоны и др. Широко распространённые дипольные отражатели имеют вид полосок из фольги или металлизированной бумаги либо отрезков металлизированного стекловолокна длиной около 0,5 длины волны, излучаемой РЛС. Диполи в большом числе выбрасывают или выстреливают в воздушное пространство упакованными в пачки или без упаковки, при полёте они рассеиваются. Пассивные отражатели, как правило, не имеют своих источников энергии. Однако в 70-х гг. в связи с развитием полупроводниковой электроники и микроминиатюризацией радиоэлектронных элементов подобные отражатели начинают снабжать миниатюрными электронными усилителями и генераторами и т. о. они превращаются в активные средства радиопротиводействия — миниатюрные передатчики помех.

На индикаторах РЛС (на отдельных участках экрана электроннолучевой трубки или по всему экрану) помехи создают шумовой фон или ложные отметки объектов, что в значительной степени осложняет обнаружение объектов, целераспределение и сопровождение их. Воздействуя на устройства автоматического обнаружения и сопровождения объектов по азимуту и углу места, скорости и дальности, помехи могут вызывать перегрузку устройств автоматической обработки данных, срыв автоматического сопровождения объектов, вносить большие ошибки в определение местоположения и параметров движения объектов.

Поделиться с друзьями: