Большая Советская Энциклопедия (РЕ)
Шрифт:
Лит.: Химушин Ф. Ф., Жаропрочные стали и сплавы, 2 изд., М., 1969.
Рефрактерность
Рефракте'рность (от франц. геfractaire — невосприимчивый), кратковременное снижение возбудимости нервной и мышечной тканей непосредственно вслед за потенциалом действия. Р. обнаруживается при стимуляции нервов и мышц парными электрическими импульсами. Если сила 1-го импульса достаточна для возникновения потенциала действия, ответ на 2-й будет зависеть от длительности паузы между импульсами. При очень коротком интервале ответ на 2-й импульс отсутствует, как бы ни увеличивалась интенсивность стимуляции (абсолютный рефрактерный период). Удлинение интервала приводит к тому, что 2-й импульс начинает вызывать ответ, но меньший по амплитуде, чем 1-й импульс (в опытах на нервных стволах, состоящих из большого числа параллельных нервных проводников), либо для возникновения ответа на 2-й импульс необходимо увеличить силу раздражающего тока (в опытах на одиночных нервных волокнах). Период сниженной возбудимости нервной или мышечной клетки называется относительным рефракторным периодом. За ним следует супернормальный период, или фаза экзальтации, т. е. фаза повышенной возбудимости,
Л. Г. Магазаник.
Рис. к ст. Рефрактерность.
Рефрактерный период
Рефракте'рный пери'од, кратковременный период полного исчезновения или снижения возбудимости нервной и мышечной тканей, наступающий после их реакции на какое-либо раздражение. Подробнее см. Рефрактерность.
Рефрактометрия
Рефрактоме'трия (от лат. refractus — преломленный и... метрия), раздел оптической техники, посвященный методам и средствам измерения преломления показателей (ПП) твёрдых, жидких и газообразных сред в различных участках спектра оптического излучения (света). Зная ПП n и его дисперсию (зависимость от длины волны света) D, можно определить и др. величины, зависящие от n и D. Методы Р. разделяются на: 1) методы прямого измерения углов преломления света при прохождении им границы раздела двух сред; 2) методы, в которых используется явление полного внутреннего отражения (ПВО) света; 3) интерференционные методы (см. Интерференция света); 4) фотометрические методы, в которых используется зависимость отражения коэффициента (или коэффициента пропускания) света на границе двух сред от соотношения их ПП (см. Отражение света, Френеля формулы); 5) прочие методы (измерение фокусного расстояния линзы и кривизны её поверхностей для определения ПП её материала, измерение поперечного смещения луча плоскопараллельной пластинкой из исследуемого материала, иммерсионный метод и т.д.). Наиболее распространены первые три из этих групп методов Р.
Для измерения методами 1-й группы образцу придают форму призмы (см. Дисперсионные призмы) и определяют ПП, добиваясь поворотом призмы того, чтобы угол отклонения луча 8 (рис. 1, а) был минимален. При другом способе измерения n исследуемый образец помещают в специально изготовленную призму с известным ПП N (рис. 1, б). Для измерения ПП жидкостей призматические образцы выполняются полыми и заливаются исследуемой жидкостью. Точность определения ПП этими методами — 10– 5, а разности ПП двух веществ ~ 10– 7. Очень часто используются и методы Р., основанные на явлении ПВО. Образец с измеряемым ПП приводится в оптический контакт с эталонной призмой из материала с высоким и заранее точно измеренным ПП N (рис. 2). Свет может направляться как со стороны образца, так и со стороны призмы. В обоих случаях в определённом (очень узком) интервале углов падения пучка лучей на границу раздела образца и призмы в поле зрения наблюдательной зрительной трубы появится чёткая граница, разделяющая тёмный и светлый участки поля. Один из участков (тёмный при освещении со стороны образца, светлый при освещении со стороны призмы) соответствует лучам, претерпевающим ПВО, а граница этого участка — предельному, или критическому, углу падения луча. Точность метода ПВО ~ 10– 5.
В интерференционных методах разность ПП сравниваемых сред определяют (рис. 3) по числу порядков интерференции лучей, прошедших через эти среды. Точность этих методов достигает 10– 7—10– 8. Их применяют, например, при измерениях в газах и разбавленных растворах.
Приборы для определения ПП методами Р. называют рефрактометрами.
Р. нашла широкое применение в физической химии для определения состава и структуры веществ, а также для контроля качества и состава различных продуктов в химической, фармацевтической, пищевой и многих других отраслях промышленности. Достоинства рефрактометрических методов химического количественного анализа — быстрота измерений, малый расход вещества и высокая точность. Знание градиентовПП позволяет производить расчёт градиентов плотности и концентрации. В некоторых случаях по виду кривых ПП можно делать выводы о характере взаимодействия веществ и образовании соединений. Методы Р. используют при проверке однородности твёрдых образцов и жидкостей, в аэро- и гидродинамических исследованиях. Особую роль играет Р. в оптической промышленности, так как ПП и дисперсия стекла и других оптических материалов являются их важнейшими характеристиками.
Лит.: Шишловский А. А., Прикладная физическая
оптика, М., 1961; Иоффе Б. В., Рефрактометрические методы химии, 2 изд., Л., 1974.М. В. Лейкин.
Рис. 2. Измерение показателя преломления (ПП) п с использованием явления полного внутреннего отражения (ПВО). 1—1'; 2—2' — ход лучей при освещении со стороны исследуемого образца (для упрощения рисунка отражённая часть луча 2 не показана). 1—1' — предельный луч, соответствующий углу j1пво в материале нижней призмы. 3—3'; 4—4'; 5—5' — ход лучей при освещении снизу, со стороны призмы с известным ПП N. 4—4' — предельный луч, при падении которого под углом j2пво на границу раздела призмы и образца происходит ПВО. А и В — схематические изображения поля зрения наблюдательной трубки при прохождении через неё предельных лучей 1' и 4'. n связан с измеряемым углом b между направлением предельного луча и нормалью к грани призмы формулой
Рис. 1. Определение показателя преломления (ПП) n по отклонению луча в призматических образцах. а — ход луча через призму с преломляющим углом a . Угол отклонения d имеет наименьшую величину при равенстве углов входа луча в призму и выхода из неё: i1 = i2 (т. н. симметричный ход луча через призму), n определяют по формуле
Рис. 3. Принцип действия интерференционного рефрактометра. Луч света разделяют так, чтобы две его части прошли через кюветы длиной l, заполненные веществами с различными показателями преломления. На выходе из кювет лучи приобретают определённую разность хода и, будучи сведены вместе, дают на экране картину интерференционных максимумов и минимумов с k порядками (схематически показана справа). Разность показателей преломления Dn = n2 – n1 = kl/2, где l — длина волны света.
Рефрактометры
Рефракто'метры, приборы для измерения преломления показателей (ПП) веществ (твёрдых, жидких и газообразных). Различают лабораторные и производственные Р. Последние иногда называются рефрактометрическими датчиками. Лабораторные Р. (о принципах их работы см. Рефрактометрия) используют для анализов, при которых ПП вещества и его дисперсия (зависимость ПП от длины волны излучения) измеряются дискретно. Производственные Р. предназначены для автоматической непрерывной регистрации динамики производственных процессов. Р. могут быть встроены в автоматические линии для регулирования технологического процесса.
Лит. см. при ст. Рефрактометрия.
Рефрактор
Рефра'ктор, телескоп, снабженный линзовым объективом. Для астрономических наблюдений впервые применен в 1609 Г. Галилеем. Р. используются для визуальных, фотографических, реже спектральных или фотоэлектрических наблюдений. Визуальный Р. содержит объектив и окуляр. Фотографический Р. (часто называется астрографом, или астрономической камерой) представляет собой большой фотоаппарат: в фокальной плоскости его устанавливается кассета с фотопластинкой.
Объективы Р. содержат не менее двух линз, из которых одна (положительная) изготовлена из лёгкого и оптически менее плотного (с меньшим преломления показателем) стекла, — крона, другая (отрицательная) — из тяжёлого стекла (флинта). Таким путём одновременно исправляют сферическую аберрациюи хроматическую аберрацию Р. В двухлинзовом объективе Р. возможно также исправление комы. Астигматизм и кривизна поля в простом двухлинзовом объективе Р. исправить нельзя, вследствие чего его поле зрения не превышает угла (в градусах)