Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (ТЕ)
Шрифт:

Электрическую мощность теплофикационных турбоагрегатов (В отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара. Поэтому в СССР крупные теплофикационные турбоагрегаты унифицированы именно по этому параметру. Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с промышленными и отопительными отборами и Т-175 с отопительным отбором имеют одинаковый расход свежего пара (около 750 т/ч ), но различную электрическую мощность (соответственно 100, 135 и 175 Мвт ). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (около 800 т/ч ). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицируются также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/ч используют для снабжения паром как конденсационных турбин на 300 Мвт,

так и самых крупных в мире ТТ на 250 Мвт.

Давление свежего пара на ТЭЦ принято в СССР равным ~ 13—14 Мн/м2 (преимущественно) и ~ 24—25 Мн/м2 (на наиболее крупных теплофикационных энергоблоках — мощностью 250 Мвт ). На ТЭЦ с давлением пара 13—14 Мн/м2, в отличие от ГРЭС, отсутствует промежуточный перегрев пара, так как на таких ТЭЦ он не даёт столь существенных технических и экономических преимуществ, как на ГРЭС. Энергоблоки мощностью 250 Мвт на ТЭЦ с отопительной нагрузкой выполняют с промежуточным перегревом пара.

Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40—50%) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов . Доля тепла, отпускаемого основным энергетическим оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0,5—0,6). Подобным же образом можно покрывать пики тепловой (паровой) промышленной нагрузки (около 10—20% от максимальной) пиковыми паровыми котлами невысокого давления. Отпуск тепла может осуществляться по двум схемам (рис. 2 ). При открытой схеме пар от турбин направляется непосредственно к потребителям. При закрытой схеме тепло к теплоносителю (пару, воде), транспортируемому к потребителям, подводится через теплообменники (паропаровые и пароводяные). Выбор схемы определяется в значительной мере водным режимом ТЭЦ.

На ТЭЦ используют твёрдое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населённым местам на них шире (по сравнению с ГРЭС) используют более ценное, меньше загрязняющее атмосферу твёрдыми выбросами топливо — мазут и газ. Для защиты воздушного бассейна от загрязнения твёрдыми частицами используют (как и на ГРЭС) золоуловители (см. Газов очистка ), для рассеивания в атмосфере твёрдых частиц, окислов серы и азота сооружают дымовые трубы высотой до 200—250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения на значительном расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусственными охладителями — градирнями . Прямоточное водоснабжение на ТЭЦ встречается редко.

На газотурбинных ТЭЦ в качестве привода электрических генераторов используют газовые турбины . Теплоснабжение потребителей осуществляется за счёт тепла, отбираемого при охлаждении воздуха, сжимаемого компрессорами газотурбинной установки, и тепла газов, отработавших в турбине. В качестве ТЭЦ могут работать также парогазовые электростанции (оснащенные паротурбинными и газотурбинными агрегатами) и атомные электростанции .

Наибольшее распространение ТЭЦ получили в СССР. Первые теплопроводы были проложены от электростанций Ленинграда и Москвы (1924, 1928). С 30-х гг. началось проектирование и строительство ТЭЦ мощностью 100—200 Мвт. К концу 1940 мощность всех действующих ТЭЦ достигла 2 Гвт, годовой отпуск тепла — 108Гдж, а протяжённость тепловых сетей — 650 км. В середине 70-х гг. суммарная электрическая мощность ТЭЦ составляет около 60 Гвт (при общей мощности электростанций ~ 220 и тепловых электростанций ~ 180 Гвт ). Годовая выработка электроэнергии на ТЭЦ достигает 330 млрд. квтxч, отпуск тепла — 4x109Гдж; мощность отдельных новых ТЭЦ — 1,5—1,6 Гвт при часовом отпуске тепла до (1,6—2,0)x104Гдж; удельная выработка электроэнергии при отпуске 1 Гдж тепла — 150—160 квтxч. Удельный расход условного топлива на производство 1 квтxч электроэнергии составляет в среднем 290 г (тогда как на ГРЭС — 370 г ); наименьший среднегодовой удельный расход условного топлива на ТЭЦ около 200 г/квтxч (на лучших ГРЭС — около 300 г/квтxч ). Такой пониженный (по сравнению с ГРЭС) удельный расход топлива объясняется комбинированным производством энергии двух видов с использованием тепла отработавшего пара. В СССР ТЭЦ дают экономию до 25 млн. т условного топлива в год (~ 11% всего топлива, идущего на производство электроэнергии).

ТЭЦ — основное производственное звено в системе централизованного теплоснабжения. Строительство ТЭЦ — одно из основных направлений развития энергетического хозяйства в СССР и др. социалистических странах. В капиталистических странах ТЭЦ имеют ограниченное распространение (в основном промышленные ТЭЦ).

Лит.: Соколов Е. Я., Теплофикация и тепловые

сети, М., 1975; Рыжкин В. Я., Тепловые электрические станции, М., 1976.

В. Я. Рыжкин.

Рис. 2. Простейшие схемы теплоэлектроцентралей с различными турбинами и различными схемами отпуска пара: а — турбина с противодавлением и отбором пара, отпуск тепла — по открытой схеме; б — конденсационная турбина с отбором пара, отпуск тепла — по открытой и закрытой схемам; ПК — паровой котёл; ПП — пароперегреватель; ПТ — паровая турбина; Г — электрический генератор; К — конденсатор; П — регулируемый производственный отбор пара на технологические нужды промышленности; Т — регулируемый теплофикационный отбор на отопление; ТП — тепловой потребитель; ОТ — отопительная нагрузка; КН и ПН — конденсатный и питательный насосы; ПВД и ПНД — подогреватели высокого и низкого давления; Д — деаэратор; ПБ — бак питательной воды; СП — сетевой подогреватель; СН — сетевой насос.

Рис. 1. Общий вид теплоэлектроцентрали.

Теплоэнергетика

Теплоэнерге'тика, отрасль теплотехники , занимающаяся преобразованием теплоты в др. виды энергии, главным образом в механическую и электрическую. Для генерирования механической энергии за счёт теплоты служат теплосиловые установки; полученная в этих установках механическая энергия используется для привода рабочих машин (металлообрабатывающих станков, автомобилей, конвейеров и т. д.) или электромеханических генераторов, с помощью которых вырабатывается электроэнергия. Установки, в которых преобразование теплоты в электроэнергию осуществляется без электромеханических генераторов, называются установками прямого преобразования энергии. К ним относят магнитогидродинамические генераторы , термоэлектрические генераторы , термоэмиссионные преобразователи энергии .

Преобразование теплоты в механическую энергию в теплосиловых установках основано на способности газо- или парообразного тела совершать механическую работу при изменении его объёма. При этом рабочее тело (газ или пар) должно совершить замкнутую последовательность термодинамических процессов (цикл). В результате такого цикла от одного или нескольких источников теплоты отбирается определённое количество теплоты Q1 и одному или нескольким источникам теплоты отдаётся количество теплоты Q2 , меньшее, чем Q1; при этом разность Q1 – Q2 превращается в механическую работу Атеор. Отношение полученной работы к затраченной теплоте называется термическим кпд этого цикла

. (1)

В простейшем случае цикл может быть осуществлен при одном источнике теплоты с температурой T1, отдающем теплоту рабочему телу, и одном источнике теплоты с температурой T2, воспринимающем теплоту от рабочего тела. При этом в температурном интервале T1T2 наивысший кпд hк = 1 — T2/T1 среди всех возможных циклов имеет Карно цикл , то есть hк ht. Кпд, равный 1, то есть полное превращение теплоты Q1 в работу, возможен либо при T1 = yen, либо при T2 = 0. Разумеется, оба эти условия нереализуемы. Важно ещё подчеркнуть, что для земных условий температура Т2 для теплоэнергетических установок должна в лучшем случае приниматься равной температуре Т окружающей среды (воздуха или водоёмов). Получить источник теплоты с температурой Т2 < Т можно лишь с помощью холодильной машины , которая для своего действия в общем случае требует затраты работы. Невозможность полного превращения теплоты в работу при условии, что все тела, участвующие в этих превращениях, будут возвращены в исходные состояния, устанавливается вторым началом термодинамики .

Процессы, протекающие в реальных установках, преобразующих теплоту в др. виды энергии, сопровождаются различными потерями, в результате чего получаемая действительная работа Адейств. оказывается меньше теоретически возможной работы Атеор . Отношение этих работ называется относительным эффективным кпд установки hoe , то есть,

. (2)

Из формул (1) и (2) получаем Адейств = Q1 x ht hoe = Q1 he ,

Поделиться с друзьями: