Большая Советская Энциклопедия (ТЕ)
Шрифт:
Для измерения температуры (при любом методе) необходимо определить температурную шкалу.
Методы измерения температуры разнообразны; они зависят от принципов действия используемых приборов, диапазонов измеряемых температур, условий измерений и требуемой точности. Их можно разделить на две основные группы: контактные методы — собственно термометрия, и бесконтактные методы — Т. излучения, или пирометрия .
Общим и существенным для всех контактных методов измерения температуры является то, что всякий прибор, измеряющий температуру среды, должен находиться с ней в тепловом равновесии (см. Температура ), то есть иметь одинаковую со средой температуру.
Основными узлами всех приборов для измерения температуры являются: чувствительный элемент, где реализуется термометрическое свойство, и связанный с ним
В газовой Т. термометрическим свойством является температурная зависимость давления газа (при постоянном объёме) или объёма газа (при постоянном давлении), соответственно различают — газовый термометр постоянного объёма и газовый термометр постоянного давления. Термометрическое вещество в этих термометрах — газ, приближающийся по своим свойствам к идеальному. Уравнение состояния идеального газа pV = RT устанавливает связь абсолютной температуры Т с давлением р (при постоянном объёме V) или Т с объёмом V (при постоянном давлении). Газовым термометром измеряют термодинамическую температуру. Точность прибора зависит от степени приближения используемого газа (азот, гелий) к идеальному.
В конденсационных термометрах термометрическим свойством является температурная зависимость давления насыщенных паров жидкости. Чувствительный элемент — резервуар с жидкостью и находящимися с ней в равновесии насыщенными парами — соединён капилляром с манометром. Термометрические вещества — обычно низкокипящие газы: кислород, аргон, неон, водород, гелий. Для вычисления температуры по измеренному давлению пользуются эмпирическими соотношениями. Диапазон применения конденсационного термометра ограничен. Высокоточные термометры (до 0,001 град ) служат для реализации реперных точек (см. Международная практическая температурная шкала ).
В термометрах жидкостных термометрическим свойством является тепловое расширение жидкостей, термометрическим веществом — главным образом ртуть. При определении температуры не производят измерений объёма жидкости; для этого при изготовлении калибруют капилляр термометра в °С, то есть по его длине наносят отметки с интервалами, соответствующими изменению объёма при заданном изменении температуры. Точность термометра зависит от точности калибровки.
В термометрах манометрических , которые являются приборами технического применения, используются те же термометрические свойства, что и в жидкостных или газовых термометрах.
В термометрах сопротивления термометрическим свойством является температурная зависимость электрического сопротивления чистых металлов, сплавов, полупроводников; термометрического вещества выбираются в зависимости от области температурных измерений и требуемой точности. Для определения температуры по измеренному электрическому сопротивлению пользуются эмпирическими формулами или таблицами. Термометры для точных измерений (платина, легированный германий) градуируются индивидуально.
В термометрах термоэлектрических с термопарой в качестве чувствительного элемента термометрическим свойством является термо-эдс термопары; термометрические вещества разнообразны и выбираются в зависимости от области применения и требуемой точности. Для определения температуры по измеренной эдс также пользуются эмпирическими формулами или таблицами. В связи со спецификой термоэлектрического термометра (дифференциального прибора) его точность зависит от точности поддержания и измерения температуры одного из спаев термопары («реперного» спая).
Измерительные приборы, которыми определяют численные значения термометрических свойств (манометры , потенциометры , логометры , мосты измерительные , милливольтметры и т. д.), называются вторичными приборами. Точность измерения температуры зависит от точности вторичных приборов. Термометры технического применения обычно индивидуально не градуируются и комплектуются соответствующими вторичными приборами, шкала которых нанесена непосредственно в °С.
В диапазоне криогенных (ниже 90 К) и сверхнизких (ниже 1 К) температур, кроме обычных методов измерения температур, применяются специфические (см. Низкие температуры ). Это — магнитная термометрия (диапазон 0,006—30
К; точность до 0,001 град ); методы, основанные на температурной зависимости Мёссбауэра эффекта и анизотропии g-излучения (ниже 1 К), термошумовой термометр с преобразователем на Джозефсона эффекте (ниже 1 К). Особой сложностью Т. в диапазоне сверхнизких температур является осуществление теплового контакта между термометром и средой.Для обеспечения единства и точности температурных измерений служит Государственный эталон единицы температуры — кельвин , что позволяет в диапазоне 1,5—2800 К воспроизводить Международную практическую температурную шкалу (МПТШ) с наивысшей достижимой в настоящее время точностью. Путём сравнения с эталоном значения температур передаются образцовым приборам, по которым градуируются и проверяются рабочие приборы для измерения температуры. Образцовыми приборами являются германиевые (1,5— 13,8 К) и платиновые [13,8—903,9 К (630,7 °С)] термометры сопротивления, платинородий (90% Pt, 10% Rd) — платиновая термопара (630,7—1064,4 °С) и оптический пирометр (выше 1064,4 °С).
Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954; Методы измерения температуры. Сб., ч. 1—2, М., 1954; Температура и её измерение. Сб., пер. с англ., М., 1960; Сосновский А. Г., Столярова Н. И., Измерение температур, М., 1970.
Д. Н. Астров, Д. И. Шаревская.
Термометры метеорологические
Термо'метры метеорологи'ческие, группа термометров жидкостных специальной конструкции, предназначенных для метеорологических измерений главным образом на метеорологических станциях. Различные Т. м. в зависимости от назначения отличаются размерами, устройством, пределами измерений и ценой деления шкалы.
Для определения температуры и влажности воздуха пользуются ртутными психрометрическими Т. м. в стационарном и аспирационном психрометре . Цена их деления 0,2 °С; нижний предел измерения -35 °С, верхний 40 °С (или соответственно -25 °С и 50 °С). При температурах ниже -35 °С (вблизи точки замерзания ртути) показания ртутного Т. м. становятся ненадёжными; поэтому для измерения более низких температур пользуются низкоградусным спиртовым Т. м., устройство которого аналогично психрометрическому, цена деления его шкалы 0,5 °С, а пределы измерений варьируют: нижний -75, -65, -60 °С, а верхний 20, 25 °С.
Для измерения максимальной температуры за некоторый промежуток времени применяется ртутный максимальный Т. м. Цена деления его шкалы 0,5 °С; пределы измерения от -35 до 50 °С (или от -20 до 70 °С), рабочее положение почти горизонтальное (резервуар слегка опущен). Показания максимальных значений температуры сохраняются благодаря наличию в резервуаре 1 (рис. 1 ) штифта 2 и вакуума в капилляре 3 над ртутью. При повышении температуры избыток ртути из резервуара вытесняется в капилляр через узкое кольцеобразное отверстие между штифтом и стенками капилляра и остается там и при понижении температуры (так как в капилляре вакуум). Таким образом, положение конца столбика ртути относительно шкалы соответствует значению максимальной температуры. Приведение показаний термометра в соответствие с температурой в данный момент производят его встряхиванием. Для измерения минимальной температуры за некоторый промежуток времени используются спиртовые минимальные Т. м. Цена деления шкалы 0,5 °С; нижний предел измерений варьирует от -75 до -41 °С, верхний от 21 до 41 °С. Рабочее положение Т. — горизонтальное. Сохранение минимальных значений обеспечивается находящимся в капилляре 1 (рис. 2 ) внутри спирта штифтом — указателем 2. Утолщения штифта меньше внутреннего диаметра капилляра; поэтому при повышении температуры спирт, поступающий из резервуара в капилляр, обтекает штифт, не смещая его. При понижении температуры штифт после соприкосновения с мениском столбика спирта перемещается вместе с ним к резервуару (так как силы поверхностного натяжения плёнки спирта больше сил трения) и остаётся в ближайшем к резервуару положении. Положение конца штифта, ближайшего к мениску спирта, указывает минимальную температуру, а мениск — температуру в настоящий момент. До установки в рабочее положение минимальный Т. м. приподнимают резервуаром кверху и держат, пока штифт не опустится до мениска спирта.