Большая Советская Энциклопедия (ТЕ)
Шрифт:
Т. б. рассчитывается на основе физических теплот (энтальпий ), участвующих в процессе веществ, и теплот соответствующих химических реакций. Для сложных процессов (особенно в металлургии, химической технологии и т. д.) Т. б. предшествует построение материального баланса, т. е. сопоставление прихода и расхода масс веществ в этом процессе; при этом Т. б. установки часто получается как сумма Т. б. аппаратов, составляющих эту установку. Различают Т. б. расчётные и экспериментальные, составленные по данным тепловых испытаний.
Т. б. выражается: в виде уравнения (в одной части которого суммируется приход теплоты, в другой — её расход или потери), таблицы или диаграммы (рис. ). Например, Т. б. парового котла выражается след. уравнением:
где
По данным Т. б. определяют численное значение коэффициентов полезного действия как отдельных частей, так и всей установки в целом. Для оценки экономичности установок, вырабатывающих несколько видов энергии, может применяться эксергический баланс (см. Эксергия ).
Лит. см. при статьях Теплотехника и Теплоэнергетика .
И. Н. Розенгауз.
Тепловой баланс автомобильного двигателя: а — полезно использованная теплота; б — потери с выхлопными газами; в — потери с охлаждающей водой; г — прочие потери.
Тепловой вакуумметр
Теплово'й вакуумме'тр, см. в ст. Вакуумметрия .
Тепловой двигатель
Теплово'й дви'гатель,двигатель , в котором тепловая энергия преобразуется в механическую работу. Т. д. составляют наибольшую группу среди первичных двигателей и используют природные энергетические ресурсы в виде химического или ядерного топлива. В основе работы Т. д. лежит замкнутый (или условно замкнутый) термодинамический цикл (см. Цикл двигателя ). Эффективность работы идеального Т. д. определяется термодинамическим кпд (см. Круговой процесс ). Работа реального Т. д., имеющего дополнительные потери, например на трение, вихреобразование, тепловые потери, оценивается так называемым эффективным кпд, то есть отношением механической работы на выходном валу Т. д. к подведённой тепловой энергии. Эффективный кпд Т. д. колеблется в пределах 0,1—0,6. По типу машин, осуществляющих рабочие термодинамические процессы, Т. д. подразделяются на поршневые двигатели (см. Поршневая машина ), роторные двигатели и реактивные двигатели . Возможны комбинации этих типов Т. д., например турбореактивный двигатель , Ванкеля двигатель . По способу подвода теплоты для нагрева рабочего тела Т. д. подразделяются на двигатели внутреннего сгорания , в которых процессы сгорания топлива и преобразования теплоты в механическую работу происходят в одних и тех же рабочих полостях (цилиндрах) Т. д., и двигатели внешнего сгорания, в которых рабочее тело получается (или нагревается) вне самого Т. д. в специальных устройствах (см., например, Стирлинга двигатель , Паровая машина ).
О. Н. Емин.
Тепловой комфорт
Теплово'й комфо'рт, комфортное тепловое состояние, функциональное состояние организма человека, характеризующееся определённым содержанием и распределением теплоты в поверхностных и глубоких тканях тела при минимальном напряжении аппарата терморегуляции . Субъективно такое состояние оценивается как наиболее предпочитаемое. Объективно оно характеризуется постоянством температуры тела , минимальной активностью потовых желёз (неощутимое потоотделение 40—60 г/ч ), небольшими периодическими колебаниями температуры конечностей, особенно кистей и стоп (в диапазоне 30—31 °С) при почти неизменном уровне температуры кожи в области туловища (около 33 °С), относительным постоянством средней температуры кожи (32—33 °С), оптимальным уровнем функционирования сердечно-сосудистой, дыхательной, пищеварительной, выделительной и других физиологических систем организма, а также наивысшим уровнем умственной работоспособности. Т. к. наблюдается у человека, находящегося в состоянии мышечного покоя при теплопродукции около 80 ккал/ч (1 ккал = 4,19 кдж ) или при лёгкой работе с теплопродукцией, не превышающей 150 ккал/ч (канцелярский труд, работа инженера, оператора, научного сотрудника и т. п.), при известном сочетании параметров микроклимата — температуры, относительной влажности, скорости движения воздуха и теплового излучения. Нормативы микроклимата для жилых и общественных зданий, обеспечивающие Т. к., разрабатываются дифференцированно, применительно к разным климатическим зонам, сезонам года и возрастным группам. У большинства взрослых практически здоровых людей, постоянно проживающих в умеренной климатической зоне и одетых в обычную комнатную одежду, Т. к. наблюдается зимой при температуре воздуха 18—22 °С, летом 23—25 °С, при разнице температур воздуха и ограждений не более 3 °С, относительной влажности 30—60%, скорости движения воздуха 0,05—0,15 м/сек (зимой) и 0,2—0,4 м/сек (летом). Зоне комфорта обнажённого человека соответствует температура воздуха 28—30 °С. Под влиянием ряда факторов (физическая работа, акклиматизация к теплу или холоду, некоторые патологические состояния) зона Т. к. несколько изменяется. Тренировка и закаливание организма путём применения воздушных ванн и водных процедур с постепенным снижением температуры раздражителя, а также динамического микроклиматического воздействия, понижая нижнюю границу, расширяют зону Т. к., чем повышают сопротивляемость
организма к простудным факторам. В ночное время рекомендуется умеренное понижение температуры вдыхаемого воздуха на 1—2 °С при хорошей теплоизоляции тела, что способствует глубине сна. У детей в первые годы жизни, особенно у новорождённых, и у пожилых людей из-за функциональной недостаточности аппарата терморегуляции зона комфортного микроклимата сужается. Индивидуальные различия границ зоны Т. к. зависят от особенностей основного обмена , акклиматизации, развития подкожного жирового слоя, привычки к ношению одежды с той или иной теплоизоляцией и т. п.Лит.: Слоним А. Д., Воронин Н. М., Влияние на организм климата как средства профилактики и курортного лечения, в кн.: Основы курортологии, ч. 1, М., 1959, с. 20—59; Горомосов М. С., Микроклимат жилищ и его гигиеническое нормирование, М., 1963; Руководство по коммунальной гигиене, т, 3, М., 1963, с. 203—51; Кандрор И. С., Демина Д. М., Ратнер Е. М., Физиологические принципы санитарно-климатического районирования территории СССР, М., 1974.
Е. М. Ратнер.
Тепловой насос
Теплово'й насо'с, устройство для переноса тепловой энергии от теплоотдатчика с низкой температурой (чаще всего — окружающей среды) к теплоприёмнику с высокой температурой. Для работы Т. н. необходима затрата внешней энергии (например, механической, электрической, химической). Процессы, происходящие в Т. н., подобны процессам, осуществляемым рабочим телом в холодильной машине , с той разницей, что назначение холодильной машины — производство холода, а Т. н. — производство теплоты (см. Холодильные циклы ). Рабочим телом в Т. н. обычно является жидкость с низкой температурой кипения (например, фреон, аммиак). Теплоприёмник Т. н. получает, кроме теплоты, эквивалентной совершаемой внешней работе, теплоту, перенесённую от теплоотдатчика, например речной воды; следовательно, коэффициент преобразования энергии в Т. н. всегда больше единицы и такой процесс более выгоден, чем непосредственное превращение электрической, механической или химической энергии в теплоту. Однако условия развития энергетики, заключающиеся в совместной выработке теплоты и электроэнергии, ограничивают использование Т. н., который применяется только в тех случаях, когда другие виды теплоснабжения затруднены (например, при удалённости объекта от ТЭЦ). Иногда Т. н. применяется для отопления в районах с жарким климатом, так как в летний период эта же установка охлаждает подаваемый в здание воздух. Т. н. получил широкое распространение во время 2-й мировой войны 1939—45 в связи с топливными затруднениями, особенно в странах, где имеется в избытке дешёвая электрическая энергия гидростанций (например, в Швейцарии, Швеции, Норвегии и др.).
В. С. Бунин.
Тепловой пограничный слой
Теплово'й пограни'чный слой, слой теплоносителя (жидкости или газа) между его основным потоком и поверхностью теплообмена; в этом слое температура теплоносителя меняется от температуры стенки до температуры потока. См. Пограничный слой .
Тепловой поток
Теплово'й пото'к, количество теплоты, переданное через изотермическую поверхность в единицу времени. Размерность Т. п. совпадает с размерностью мощности . Т. п. измеряется в ваттах или ккал/ч (1 вт = 0,86 ккал/ч ). Т. п., отнесённый к единице изотермической поверхности, называется плотностью Т. п., удельным Т. п. или тепловой нагрузкой; обозначается обычно q, измеряется в вт/м2 или ккал/ (м2xч ). Плотность Т. п. — вектор, любая компонента которого численно равна количеству теплоты, передаваемой в единицу времени через единицу площади, перпендикулярной к направлению взятой компоненты.
Тепловой процесс
Теплово'й проце'сс, термодинамический процесс, изменение состояния физической системы (рабочего тела ) в результате теплообмена и совершения работы. Если Т. п. протекает настолько медленно, что в каждый момент рабочее тело будет находиться в равновесии термодинамическом , то он является равновесным, в противном случае Т. п. — неравновесный процесс . Если Т. п. можно провести в обратном направлении через ту же последовательность промежуточных состояний, то он называется обратимым процессом (такой Т. п. должен быть равновесным). Все реальные Т. п. — необратимые процессы , поскольку они осуществляются с конечными скоростями, при конечных разностях температур между источником теплоты и рабочим телом и сопровождаются трением и потерями теплоты в окружающую среду.
Т. п. могут происходить при постоянных давлении (изобарный процесс ), температуре (изотермический процесс ), объёме (изохорный процесс ). Т. п., протекающий без теплообмена с окружающей средой, называется адиабатным процессом ; при обратимом адиабатном процессе энтропия системы остаётся постоянной, то есть процесс изоэнтропийный. Необратимый адиабатный процесс сопровождается увеличением энтропии. Т. п., при котором остаётся постоянной энтальпия (теплосодержание) системы, — изоэнтальпийный процесс. Круговые процессы , при осуществлении которых производятся работа, теплота или холод, в технике называются циклами (см. Карно цикл , Ранкина цикл , Холодильные циклы . Цикл двигателя ).
И. Н. Розенгауз.
Графическое изображение тепловых процессов на диаграмме р — V (давление — объём): 1 — изобара; 2 — изотерма; 3 — адиабата; 4 — изохора.
Тепловой пункт
Теплово'й пункт, теплораспределительный пункт, комплекс установок, предназначенных для распределения тепла, поступающего из тепловой сети , между потребителями в соответствии с установленными для них видом и параметрами теплоносителя.