Большая Советская Энциклопедия (ВА)
Шрифт:
В дальнейшем идеи Гейтлера — Лондона были распространены на многоатомные молекулы, что привело к созданию теории локализованных пар. Согласно этой теории, общая картина распределения электронной плотности в молекулах типа MXk складывается из независимых фрагментов М — X, связь в каждом из которых осуществлена парой электронов (по одному от центрального атома М и от заместителя X), локализованной между двумя атомами М и X. Согласно этой теории В. не просто связывается с наличием неспаренного электрона, но и характеризуется тем, в каком состоянии этот электрон находится (см. Атом .) или, в терминах теории химической связи, какую атомную орбиталь (АО) он занимает. АО разного типа имеют различную ориентацию в пространстве: s-орбиталь сферически симметрична, орбитали px , ру и pz вытянуты вдоль трёх взаимно перпендикулярных осей и т.д. Электроны атомов в молекулах в общем случае описываются «гибридными» (смешанными) орбиталями, в которые, в принципе, могут входить любые валентные АО в разных количественных соотношениях и у которых электронные облака сконцентрированы вдоль направлений связей М — Х значительно сильнее, чем у простых АО. Состояние валентных электронов, а следовательно
В теории направленных валентностей предполагается, что связи М — Х в молекулах MXk тем прочнее, чем больше перекрывание электронных облаков гибридных орбиталей атомов М и X, то есть чем сильнее эти облака сконцентрированы вдоль направлений М — X. Поэтому молекулы MXk должны иметь такое геометрическое строение, при котором плотность гибридных АО вдоль направлений связей максимальна, а валентные углы Х — М — Х совпадают с углами между направлениями гибридных АО центрального атома. Например, в молекулах типа PH3 и SH2 связи осуществляются почти чистыми 3р– орбиталями центральных атомов, и поэтому PH3 и SH2 имеют пирамидальное и угловое строение с углами Н — М — Н ~ 90°. В дигалогенидах Zn, Cd, Hg, двуокисях, дисульфидах и др. соединениях углерода и его аналогов связи образуются за счёт sp– гибридных АО с валентным углом 180°, так что все молекулы типа CdCl2 , Hg (CH3 )2 , HgI2 , CS2 , SiO2 и др. в парах имеют линейное строение. В случае Са, Sr, Вa, Ra и переходных металлов III—VI групп смешанная гибридизация sp + sd приводит к тому, что молекулы типа CaF2 , SrF2 , BaHal2 , TiO2 , HfO2 , TaO2 , ThO2 , UO2 и др. имеют угловое строение.
С проблемой В. тесно связано приближённое понятие валентного состояния атома— гипотетического состояния, в котором находится атом в молекуле. Оно характеризуется валентной конфигурацией, то есть типом и числом заполненных и пустых валентных АО; их гибридизацией, воспроизводящей геометрическое строение ближайшего окружения рассматриваемого атома; числом электронов (в теории локализованных пар — это целое число: 2, 1 или 0), заселяющих каждую из гибридных АО, и относительной ориентацией спинов электронов. Например, в молекуле метана CH4 атом С (см. рис. 4 ) имеет валентную конфигурацию 2s 2p3 с четырьмя тетрагональными sp3– гибридными орбиталями (te ), направленными к вершинам тетраэдра, каждая из которых заселена одним электроном с неопределенно ориентированным спином, осуществляющим одну гайтлер-лондоновскую связь с соответствующим атомом Н. Как правило, валентное состояние атома в молекуле не совпадает с основным состоянием изолированного атома. Так, у углерода и его аналогов основное состояние (рис. 4 , а) может быть лишь двухвалентным. У всех атомов II группы периодической системы основное состояние s2 вообще не может быть валентным, и для образования молекул типа ZnCl и ZnCl2 необходимо возбуждение s– электрона на ближайший пустой р– уровень. Энергия возбуждения валентного состояния из основного состояния для разных атомов различна и может достигать нескольких сотен ккал/моль , давая существенный вклад в общий энергетический баланс образования молекул из атомов. В случае Zn, Cd и Hg возбуждение s ® р происходит при присоединении первого атома галогена и требует значительных затрат энергии (90—120 ккал/моль ), поэтому энергия разрыва связи М — Hal в двухатомных молекулах MHal значительно меньше, чем связи HalM — Hal в трёхатомных молекулах MHal2 (см. Энергия химической связи ). У Ca, Sr, Вa, Ra затраты на возбуждение s ® р или s ® d значительно меньше (30—50 ккал/моль ), и здесь энергии разрыва связей в молекулах галогенидов гораздо ближе друг другу.
В комплексных соединениях координационное число центрального атома часто больше числа электронов в его валентной оболочке. Важную роль здесь играют донорно-акцепторная связь и дативные связи, образующиеся за счёт неподелённой электронной пары (то есть пары электронов с противоположными спинами, занимающих одну АО) одного атома и пустой орбитали другого. Соответственно должны быть расширены и представления о В.: способность к образованию связей, а следовательно и В. атома, обусловливается не только неспаренными электронами, но и неподелёнными парами и пустыми орбиталями валентной оболочки. Наибольшая суммарная В. должна быть равна числу всех АО, составляющих валентную оболочку атома, поскольку каждая валентная АО, независимо от того, сколькими электронами она заселена у атома в валентном состоянии, потенциально способна образовать одну связь (гайтлер-лондоновскую, донорно-акцепторную или дативную). В рамках этой концепции максимальная В. всех элементов второго периода от Li до F равна 4 (одна s– opбиталь + три р– орбитали), у элементов следующих периодов — 9 (за счёт ещё пяти d– opбиталей) и т.д. Решение же вопроса о том, какие из этих четырёх или девяти В. насыщаются и какие остаются неиспользованными, в соединениях каждого конкретного типа определяется не только свойствами самого атома и его положением в периодической системе, но и особенностями соединения в целом. Полный ответ на него может быть получен с помощью квантово-химических расчётов. За счёт донорно-акцепторного взаимодействия фактическое число связей атома (а следовательно и его В.) в комплексных и даже в простых соединениях в общем случае может быть больше не только числа его
неспаренных электронов, но и числа связанных с ним соседних атомов.Следует помнить, что подразделение связей в соединениях на гайтлер-лондоновские, донорно-акцепторные и дативные имеет, вообще говоря, лишь генетический смысл, поскольку после того как соединение образуется, в нём происходит перераспределение электронной плотности и выравнивание связей: например, в каждом из комплексных анионов типа [BF4 ]– , [BeF4 ]2- , [SiFe6] 2- , [АlF6]3- , [ZnF6 ]4- и др. все связи М — F совершенно одинаковы.
Установлено также, что в солях ион NO3– имеет структуру правильного треугольника, а ионы
Теория локализованных пар ограничена в основном несопряжёнными органическими и простыми неорганическими соединениями. Так, в случае «электронно-избыточных» молекул типа PF5 , SF6 , IF7 , XeF6 эта теория не может объяснить осуществления высших В. у атомов Р, S, I, Xe без привлечения валентных состояний с большими целочисленными заселённостями внешних d– opбиталей (sp3d для Р, sp3d3 для I, s2p3d3 для Xe и т.д.); однако энергии возбуждения последних столь велики (200—400 ккал/моль и более), что затраты на их возбуждение вряд ли могут окупиться за счёт выигрыша в энергии при образовании связей. Аналогичные трудности возникают при рассмотрении комплексных соединений, координационных кристаллов и т.д. В «электронно-дефицитных» молекулах типа В2 Н6 (рис. 1 , в) число связей, образуемых атомом Н, больше числа имеющихся у него валентных АО, так что связи мостиковых Н с двумя атомами В могут быть описаны только трёхцентровыми молекулярными орбиталями, охватывающими фрагменты В — Н — В. В случае ароматических и сопряжённых молекул типа C5 H5 , C6 H6 , C7 H7 и др., их комплексов с металлами (рис. 3 ) и других производных валентные 2р p-электроны в равной степени принадлежат всем атомам С и могут быть описаны лишь с помощью делокализованных молекулярных орбиталей, охватывающих всё кольцо или углеродный остов в целом. Иными словами, представления о локализованных В. и связях оказались слишком узкими, чтобы вместить все известные типы соединений.
Поэтому естественным следующим шагом в развитии общей теории В. стал метод молекулярных орбиталей, MO, который рассматривает молекулу как совокупность ядер и электронов, где каждый электрон движется в поле остальных электронов и всех ядер. Молекулярные орбитали, описывающие состояние электронов, в общем случае охватывают все атомы молекулы, так что каждый атом способен в принципе образовывать связи со всеми остальными атомами молекулы. Метод МО значительно более общ и последователен, что делает его в принципе пригодным для описания любых классов соединений. (См. Молекулярных орбиталей метод , Химическая связь .)
Лит.: Сыркин Я. К., Периодическая система и проблема валентности, М., 1971; Сыркин Я. К. и Дяткина М. Е., Химическая связь и строение молекул, М.—Л., 1946; Паулинг Л., Природа химической связи, пер. с англ., М. — Л., 1947; Шусторович Е. М., Новое в учении о валентности, М., 1968; Коулсон Ч., Валентность, пер. с англ., М., 1965: Маррел Д., Кеттл С., Теддер Д., Теория валентности, пер. с англ., М., 1968; Астахов К. В., Современное состояние периодической системы Д. И. Менделеева, М., 1969.
О. П. Чаркин.
Под редакцией академика Я. К. Сыркина.
Рис. 3. (p-Комплексы переходных металлов (
Рис. 4. Схема возбуждения валентного состояния (г) атома углерода в молекуле типа CH4 из основного состояния (а): а — основное состояние наинизшей конфигурации 2s2 2p2 ; б — нижнее состояние валентной конфигурации 2s2p3 ; в— гибридизация АО; г—неопределённая ориентация спинов валентных электронов (валентное состояние).
Рис. 2. Кластерная структура Mo6 Cl4+8 (
Рис. 1. Мостиковые лиганды (Cl, H, CH3 ) в димерных и полимерных соединениях: Al2 Cl6 (а), (PdCl2 )x (б), В2 Н6 (в) и Al2 (CH3 )6 (г).